The Dislocation as a Fundamental New Concept in Continuum Mechanics

  • Ekkehart Kröner†
Part of the Materials Science Research book series (MSR)


The main object of this paper is to give the connection between macro and micromechanics (or continuum mechanics and solid state physics) as far as it can be delineated today. The theory of the residual stress state is rather well-developed. The state is described geometrically by elastic strain and lattice curvature, the latter being equivalent to the dislocation density. The static description uses force and couple stresses, the latter being the reaction of the body against the lattice curvature. The material constant connecting bending-type lattice curvature with the corresponding couple stress is derived by applying elasticity theory on a microscopic scale. The material constant depends on the ordinary elastic constants of the body and on the distance of the glide planes of the dislocations. Beside these positive results, the paper contains an outline of what still has to be done.


Dislocation Density Continuum Theory Couple Stress Screw Dislocation Dislocation Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Kroupa Czech. J Phys. 12 (1962).Google Scholar
  2. 2.
    G. Bradfield and H. Pursey, Phil. Mag. 44, 437 (1953).Google Scholar
  3. 3.
    E. Schmid, Uhrentechnische Forschung-Skiflug (Straumann-Festschrift) Steinkopff, Stuttgart, 1952, p. 25.Google Scholar
  4. 4.
    E. Kröner, Z. Physik 151, 504 (1958).CrossRefGoogle Scholar
  5. 5.
    E. Kröner, Tehnika (Belgrade) 15, 2187 (1960).Google Scholar
  6. 6.
    J. F. Nye, Acta Met. 1, 153 (1953).CrossRefGoogle Scholar
  7. 7.
    K. Kondo, Memoirs of the Unifying Study of the basic Problems in Engineering Science by Means of Geometry, Vol. I/III, Tokyo: Gakujutsu Bunken Fukyu-Kai 1955-58.Google Scholar
  8. 8.
    B. A. Bilby, Progr. in Solid Mechanics 1, 329 (1960).Google Scholar
  9. 9.
    E. Kröner, Arch. Rat. Mech. Anal. 4, 273 (1960); 7, 78 (1961).CrossRefGoogle Scholar
  10. 10.
    J. D. Livingston, Direct Observation of Imperfection in Crystals, Interscience, New York, 1962 (in press).Google Scholar
  11. 11.
    E. and F. Cosserat, Théorie des corps déformables, A. Hermann et fils, Paris, 1909 p. 122.Google Scholar
  12. 12.
    E. Beltrami, Atti accad. naz. Linc. Rend. Classe Sci. Fis. mat. e nat. V. Ser. 1/1, 141 (1892).Google Scholar
  13. 13.
    W. Günther, Abhandl. Braunschweig. wiss. Ges. 10, 195 (1958).Google Scholar
  14. 14.
    F. A. McClintock, P. A. André, K. R. Schwerdt, and R. E. Stoeckly, Nature 182, 652 (1958).CrossRefGoogle Scholar
  15. 15.
    C. Truesdell and R. A. Toupin, Encyclopedia of Physics 3/2, 226 (1960).Google Scholar
  16. 16.
    G. Grioli, Ann. Math. Pura Appl. 50, 389 (1960).CrossRefGoogle Scholar
  17. 17.
    E. Kröner, Int. J. Eng. Sci. 1, 261 (1963).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1963

Authors and Affiliations

  • Ekkehart Kröner†
    • 1
  1. 1.Technische HochschuleStuttgartGermany

Personalised recommendations