Advertisement

Recent Observations on Quench-Aging and Strain-Aging of Iron and Steel

  • A. S. Keh
  • W. C. Leslie
Part of the Materials Science Research book series (MSR)

Abstract

The results of recent studies of the precipitation of carbides and nitrides from solid solution in alpha iron are combined with earlier findings in an effort to present as complete an account as possible of these processes and their effects. The study of the effects of alloy additions on carbide nucleation, growth and structure was continued, using Fe-Si-C alloys. Silicon greatly retards the rate of growth of carbides and widens the temperature range in which the low-temperature carbide is stable. The inhibition of tempering of martensite by silicon is attributed to these effects. The structural changes during quench-aging of an Fe–0.02%N alloy and an 0.03%C rimmed steel are correlated with changes in hardness, tensile properties, and relaxation strength. During the period of rapid increase of hardness, the interparticle spacing remained constant or increased slightly. The hardening is attributed principally to particle thickening, which increases resistance to passage of dislocations. The interactions between dislocations and particles after various aging treatments substantiates this conclusion. Softening during overaging was related to an increase of interparticle spacing. The quench-aging of low-carbon steels can be complicated by a change in the carbide from the low-temperature phase to Fe3C. Preaging of the 0.02%N alloy at room temperature greatly enhanced its ability to harden during subsequent aging at 100°C, by increasing the number of nuclei for precipitation. In Fe-N, Fe-C, and Fe-Mn-C alloys, and in low-carbon steels, substantial strain-aging can occur without detectable precipitation on dislocations, when the alloys are not supersaturated with interstitial elements. If the alloys are supersaturated at the aging temperature, the later stages of strain-aging include precipitation (quench-aging). The rise in flow stress during strain-aging is attributed to the strong pinning of dislocations, which necessitates the generation of new dislocations at points of stress concentration. The strengthening of steel in the blue-brittle temperature range is associated with repeated generation of new dislocations as the old dislocations are pinned dynamically by interstitial solute atoms during straining.

Keywords

Flow Stress Internal Friction Aging Time Recent Observation Aging Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Kenyon and R. S. Burns, Age Hardening of Metals, ASM, 262 (1940).Google Scholar
  2. 2.
    H. W. Paxton, Precipitation from Solid Solution, ASM 208 (1959).Google Scholar
  3. 3.
    C. Wert, Thermodynamics in Physical Metallurgy, ASM 178 (1950).Google Scholar
  4. 4.
    W. Pitsch and K. Lücke, Arch. Eisenhüttenw. 27, 45 (1956).Google Scholar
  5. 5.
    R. H. Doremus, Trans. AIME 218, 596 (1960).Google Scholar
  6. 6.
    C. Wert, J. Appl. Phys. 20, 943 (1949).CrossRefGoogle Scholar
  7. 7.
    S. Harper, Phys. Rev. 83, 709 (1951).CrossRefGoogle Scholar
  8. 8.
    R. C. Newman and R. Bullough, Proc. Roy. Soc. 266, 209 (1962).CrossRefGoogle Scholar
  9. 9.
    L. J. Dijkstra, Trans. AIME 185, 752 (1949).Google Scholar
  10. 10.
    W. Dahl and K. Lücke, Arch. Eisenhüttenw. 25, 241 (1954).Google Scholar
  11. 11.
    W. R. Thomas and C. M. Leak, J. Iron and Steel Inst. 180, 155 (1955).Google Scholar
  12. 12.
    W. S. Carswell, Acta Met. 9, 670 (1961).CrossRefGoogle Scholar
  13. 13.
    A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc. A62, 49 (1949).CrossRefGoogle Scholar
  14. 14.
    A. L. Tsou, J. Nutting, and J. W. Menter, J. Iron and Steel Inst. 172, 163 (1952).Google Scholar
  15. 15.
    G. Lagerberg and B. S. Lement, Trans. ASM 50, 141 (1958).Google Scholar
  16. 16.
    R. H. Doremus and E. F. Koch, Trans. AIME 218, 591 (1960).Google Scholar
  17. 17.
    E. Smith, Direct Observation of Imperfections in Crystals, Interscience, New York, 1962, p. 203.Google Scholar
  18. 18.
    K. F. Hale (private communications).Google Scholar
  19. 19.
    W. Pitsch, Arch. Eisenhüttenw. 32, 493 (1961).Google Scholar
  20. 20.
    W. C. Leslie, Acta Met. 9, 1004 (1961).CrossRefGoogle Scholar
  21. 21.
    A. S. Keh and H. A. Wriedt, Trans. AIME. 224, 560 (1962).Google Scholar
  22. 22.
    E. W. Filer and L. S. Darken, unpublished results, quoted by W. C. Leslie, Nitrogen in Ferritic Steels, A.I.S.I. Contributions to the Metallurgy of Steel, Feb. 1959.Google Scholar
  23. 23.
    K. H. Jack, Proc. Roy. Soc. A195, 34 (1948).CrossRefGoogle Scholar
  24. 24.
    R. F. Mehl, C. S. Barrett, and H. S. Jerabek, Trans. AIME 113, 211 (1934).Google Scholar
  25. 25.
    G. R. Booker, Acta Met. 9, 590 (1961).CrossRefGoogle Scholar
  26. 26.
    W. Pitsch, Arch. Eisenhüttenw. 32, 573 (1961).Google Scholar
  27. 27.
    K. H. Jack, Proc. Roy. Soc. (London) 208, 216 (1951).CrossRefGoogle Scholar
  28. 28.
    G. R. Booker, J. Norbury, and A. L. Sutton, J. Iron and Steel Inst. 187, 205 (1957).Google Scholar
  29. 29.
    H. S. Rosenbaum and D. Turnbull, Acta Met. 7, 664 (1959).CrossRefGoogle Scholar
  30. 30.
    W. C. Leslie, R. M. Fisher, and N. Sen, Acta Met. 7, 632 (1959).CrossRefGoogle Scholar
  31. 31.
    K. Kuo and A. Hultgren, Jernkontorets Ann. 135, 449 (1951).Google Scholar
  32. 32.
    R. W. Gurry, J. Christakos, and L. S. Darken, Trans. ASM, 53, 187 (1961).Google Scholar
  33. 33.
    W. S. Owen, Trans. ASM, 46, 812 (1954).Google Scholar
  34. 34.
    A. G. Allten and P. Payson, Trans. ASM 45, 498 (1953).Google Scholar
  35. 35.
    C. H. Shih, B. L. Averbach, and M. Cohen, Trans. ASM 48, 86 (1956).Google Scholar
  36. 36.
    J. Vajda, J. J. Hauser, and C. Wells, Trans. ASM 49, 517 (1957).Google Scholar
  37. 37.
    R. W. Heckel and H. W. Paxton, Trans. AIME 218, 799 (1960).Google Scholar
  38. 38.
    G. R. Booker (private communication).Google Scholar
  39. 39.
    W. C. Leslie, R. L. Rickett, C. P. Stroble, and G. Konoval, Trans. ASM 53, 715 (1960).Google Scholar
  40. 40.
    F. Garofalo, P. R. Malenock, and G. V. Smith, Symposium on Elastic Constants, ASTM, STP No. 129, 10 (1952).Google Scholar
  41. 41.
    E. S. Davenport and E. C. Bain, Trans. ASM 23, 1047 (1935).Google Scholar
  42. 42.
    R. L. Rickett, C. E. Morgan, and W. P. Wallace, unpublished results (1939).Google Scholar
  43. 43.
    E. Orowan, Symposium on Internal Stresses in Metals and Alloys, Institute of Metals, London, 451 (1948).Google Scholar
  44. 44.
    G. S. Ansell and F. V. Lenel, Acta. Met. 8, 612 (1960).CrossRefGoogle Scholar
  45. 45.
    W. H. Meikeljohn and R. E. Skoda, Acta. Met. 7, 675 (1959).CrossRefGoogle Scholar
  46. 46.
    G. S. Ansell, Acta. Met. 9, 518 (1961).CrossRefGoogle Scholar
  47. 47.
    M. E. Fine, Relation Between the Structure and Properties of Metals (to be published).Google Scholar
  48. 48.
    E. Hornbogen (to be published).Google Scholar
  49. 49.
    D. V. Wilson and B. Russell, Acta Met. 7, 628 (1959).CrossRefGoogle Scholar
  50. 50.
    D. V. Wilson and B. Russell, Acta Met. 8, 36 (1960).CrossRefGoogle Scholar
  51. 51.
    D. V. Wilson and B. Russell, Acta Met. 8, 468 (1960).CrossRefGoogle Scholar
  52. 52.
    W. C. Leslie and A. S. Keh, J. Iron and Steel Inst., 200, 722 (1962).Google Scholar
  53. 53.
    F. R. N. Nabarro, Strength of Solids, Phys. Soc. (London), 38 (1948).Google Scholar
  54. 54.
    A. H. Cottrell, Relation of Properties to Microstructure, ASM, 131 (1954).Google Scholar
  55. 55.
    A. S. Keh and S. Weissmann, Electron Microscopy and Strength of Crystals, Interscience, New York, (1963), p. 231.Google Scholar
  56. 56.
    A. H. Cottrell, Plastic Deformation of Crystalline Solids, 60 (1950).Google Scholar
  57. 57.
    G. T. Hahn, Acta Met. 10, 727 (1962).CrossRefGoogle Scholar
  58. 58.
    J. J. Gilman and W. G. Johnston, J. Appl. Phys. 31, 687 (1960).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1963

Authors and Affiliations

  • A. S. Keh
    • 1
  • W. C. Leslie
    • 1
  1. 1.Edgar C. Bain LaboratoryUnited States Steel CorporationMonroevilleUSA

Personalised recommendations