Effective Medium Expression for the Optical Properties of Periodic Multilayer Films

  • H. Ugur
  • R. Johanson
  • H. Fritzsche
Part of the Institute for Amorphous Studies Series book series (IASS)


We derive an expression for the normal incidence transmittance of light through a multilayer film consisting of an arbitrary number of sequential layers of two materials with different optical constants. For wavelengths large compared to the thicknesses of the two materials, da and db, the optical properties of the multilayer film are determined by a complex effective medium dielectric constant εeada/(da+db)+εbdb/(da+db) where εa and εb are the complex dielectric constants of the two materials. We verify the correctness of the effective medium expression by comparing the optical spectra of multilayer films predicted by this formula with numerical calculations obtained by solving the boundary value problem for all layers. After establishing the validity of the effective medium expression, we then use it to analyze optical transmittance data of multilayer films consisting of hydrogenated amorphous silicon (a-Si:H) and amorphous silicon nitride (a-SiNx:H). The optical gap Eo of the a-Si:H layers is found to increase with decreasing a-Si:H layer thickness whereas the slope B of the Tauc plot remains constant.


Amorphous Silicon Effective Medium Optical Constant Multilayer Film Silicon Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Abeles and T. Tiedje, Phys. Rev. Lett. 51: 2003 (1983).CrossRefGoogle Scholar
  2. 2.
    H. Munekata, M. Mizuta, and H. Kukimoto, J. Non-Cryst. Solids 59–60: 1167 (1983).Google Scholar
  3. 3.
    J. Kakalios, H. Fritzsche, N. Ibaraki, and S. R. Ovshinsky, J. Non-Cryst. Solids 66: 339 (1984).CrossRefGoogle Scholar
  4. 4.
    B. Abeles, T. Tiedje, K. S. Liang, H. W. Deckman, H. C. Stasiewski, J. C. Scanlon, and P. M. Eisenberger, J. Non-Cryst. Solids 66: 351 (1984).CrossRefGoogle Scholar
  5. 5.
    T. Tiedje, B. Abeles, P. D. Persans, B. G. Brooks, and G. D. Cody, J. Non-Cryst. Solids 66: 345 (1984).CrossRefGoogle Scholar
  6. 6.
    M. Hirose and S. Miyazaki, J. Non-Cryst. Solids 66: 327 (1984).CrossRefGoogle Scholar
  7. 7.
    H. W. Deckman, J. H. Dunsmuir, and B. Abeles, Appl. Phys. Lett. 46: 171 (1985).CrossRefGoogle Scholar
  8. 8.
    N. Ibaraki and H. Fritzsche, Phys. Rev. B 30: 5791 (1984).CrossRefGoogle Scholar
  9. 9.
    H. Ugur and H. Fritzsche, Solid State Commun. 52: 649 (1984).CrossRefGoogle Scholar
  10. 10.
    Rujuang Cheng, Shulin Wen, Jingwei Feng, and H. Fritzsche, Appl. Phys. Lett. 46: 592 (1985).CrossRefGoogle Scholar
  11. 11.
    C. B. Roxlo, B. Abeles, and T. Tiedje, Phys. Rev. Lett. 52: 1994 (1984).Google Scholar
  12. 12.
    M. Hirose, S. Miyazaki, and N. Murayama, this volume.Google Scholar
  13. 13.
    M. Born and E. Wolf, “Principles of Optics”, Pergamon Press 6th Edition, (1983).Google Scholar
  14. 14.
    D. Stroud, Phys. Rev. B 12: 3368 (1975).CrossRefGoogle Scholar
  15. 15.
    D. E. Aspnes and J. B. Theeten, J. Appl. Phys. 50: 4928 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • H. Ugur
    • 1
  • R. Johanson
    • 1
  • H. Fritzsche
    • 1
  1. 1.James Franck Institute and Department of PhysicsThe University of ChicagoChicagoUSA

Personalised recommendations