Skip to main content

The Growth, Structure, and Properties of Sea Ice

  • Chapter

Part of the book series: NATO ASI Series

Abstract

On the geophysical scale sea ice is a thin, fragile, dynamic, solid layer that forms under the thermodynamic conditions that occur near the Poles. There it serves as a boundary between two much larger fluid bodies — the ocean and the atmosphere. Typical scales of interest would be 103 to 106 m. In the present paper we take a more detailed view, focusing on the ice itself at scales ranging between 100 and 10−3 m, with an occasional glimpse at a scale of 10−10 m. It is our purpose to help the reader understand the internal structure of sea ice, how this structure develops, and how it affects the bulk properties of the ice. Although this is a subject that has received little attention in comparison to similar studies of metals and ceramics, it is, in our view, very important, as many details in the behavior of sea ice are structurally controlled. The variations in structure are, in turn, determined by the environmental conditions under which the ice has formed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackley, S. F. (1982) Ice scavenging and nucleation: Two mechanisms for incorporation of algae into newly forming sea ice. AGU- ASLO Ocean Sciences Meeting, San Antonio, Texas. (Abstract in EOS, 63: 54 ).

    Google Scholar 

  • Ackley, S. F. and T. E. Keliher (1979) Ice sheet internal radio-echo reflections and associated physical property changes with depth. J. Geophys. Res., 84 (BIO): 5675–5680.

    Google Scholar 

  • Adams, C. M., D. M. French and W. D. Kingery (1963) Field solidification and desalination of sea ice. In Ice and Snow: Properties, Processes and Applications (W. D. Kingery, éd.), MIT Press, Cambridge, Mass., p. 277–288.

    Google Scholar 

  • Addison, J. R. (1977) Impurity concentrations in sea ice. J. Glaciol., 18, (78): 117–127.

    Google Scholar 

  • Anderson, D. L. (1958) A model for determining sea ice properties. In Arctic Sea Ice, U.S. National Academy of Sciences–National Research Council, Pub. 598, p. 148–152.

    Google Scholar 

  • Anderson, D. L. (1960) The physical constants of sea ice. Research, 13 (8): 310–318.

    Google Scholar 

  • Anderson, D. M. and W. F. Weeks (1958) A theoretical analysis of sea ice strength. Trans. Am. Geophys. U., 39 (4): 632–640.

    Google Scholar 

  • Arakawa, K. (1958) Studies on the freezing of water, II. J. Faculty Sci. Hokkaido Univ., Ser. II, 4: 311–339.

    Google Scholar 

  • Arakawa, K. and K. Higuchi (1954) On the freezing process of aqueous solutions. Low Temp. Sci., A12: 73–86.

    Google Scholar 

  • Armstrong, T., B. Roberts and C. Swithinbank (1966) Illustrated Glossary of Snow and Ice. Scott Polar Research Institute, Special Pub. 4, 60 pp.

    Google Scholar 

  • Assur, A. (1958) Composition of sea ice and its tensile strength. In Arctic Sea Ice, U.S. National Academy of Sciences — National Research Council, Pub. 598, p. 106–138.

    Google Scholar 

  • Assur, A. and W. F. Weeks (1964) Growth, structure, and strength of sea ice. USA Cold Regions Research and Engineering Laboratory, Research Report 135, 19 p.

    Google Scholar 

  • Bari, S. A. and J. Hallett (1974) Nucleation and growth of bubbles at an ice-water interface. J. Glaciol., 13 (69): 489–520.

    Google Scholar 

  • Barrett, C. S. (1952) Structure of Metals. McGraw-Hill. New York.

    Google Scholar 

  • Bennington, K. O. (1959) Preliminary report on sea ice crystal fabrics on Station Charlie. In Semi—Annual Report, 1 December 1959, Drifting Station Charlie, Project Husky, ONR 477 (24) 307–252.

    Google Scholar 

  • Bennington, K. O. (1963a) Some crystal growth features of sea ice. J. Glaciol., 4 (36): 669–688.

    Google Scholar 

  • Bennington, K. O. (1963b) Some chemical composition studies on arctic sea ice. In Ice and Snow: Properties, Processes and Applications ( W. D. Kingery, Ed.), MIT Press, Cambridge, Mass., p. 248–257.

    Google Scholar 

  • Bergdahl, L. (1977) Physics of ice and snow as affects thermal Pressure. Department of Hydraulics, Goteborg, Sweden, Chalmers University of Technology, Rept. Series A: l, 158p.

    Google Scholar 

  • Bilello, M. A. (1961) Ice thickness observations in the North American Arctic and Subarctic for 1958–59, 1959–60. USA Cold Regions Research and Engineering Laboratory, Special Report 43, Pt. 1, 43 p.

    Google Scholar 

  • Blinov, L. K. (1965) The salt content of sea water and sea ice. Trudy Gos. Okeanograf. Inst., 81: 5–55.

    Google Scholar 

  • Boiling, G. F. and W. A. Tiller (1960) Growth from the melt. I: Influence of surface intersections in pure metals. J. Appl. Phys., 31: 1345–1350.

    Google Scholar 

  • Bragg, W. H. (1922) The crystal structure of ice. Proc. Phys. Soc., 34: 98–103.

    Google Scholar 

  • Buck, K. R. and D. Garrison (1982) Sea ice algal communities in the Weddell Sea. II: Population comparisons between the water column and sea ice. AGU-ASLO Ocean Sciences Meeting, San Antonio. (Abstract in EOS, 63.)

    Google Scholar 

  • Burton, J. A., R. C. Prim and W. P. Slichter (1953) The distribution of solute in crystals grown from the melt. I: Theoretical. J. Chem. Phys., 21: 1987–1991.

    Google Scholar 

  • Campbell, K. J. and A, S. Orange (1974) The electrical anisotropy of sea ice in the horizontal plane. J. Geophys. Res., 79 (33): 5059–5063.

    Google Scholar 

  • Carslaw, H. S. and J. C. Jaeger (1959) Conduction of Heat in Solids. Oxford University Press, 510 p.

    Google Scholar 

  • Carte, A. E. (1961) Air bubbles in ice. Proc. Phys. Soc. (London), 77 (495): 757–768.

    Google Scholar 

  • Cherepanov, N. V. (1957) Using the methods of crystal optics for determining the age of drift ice. Problemy Arktiki, 2: 179–184.

    Google Scholar 

  • Cherepanov, N. V. (1964) Structure of sea ice of great thickness. Trudy Arkt. Antarkt. Nauch. Issled. Inst., 367: 13–18.

    Google Scholar 

  • Cherepanov, N. V. (1971) Spatial arrangement of sea ice crystal structure. Prob. Arkt. Antarkt., 38: 176–181.

    Google Scholar 

  • Colbeck, S. (1979) Grain clusters in wet snow. J. Coll. Inter. Sci., 72 (3).

    Google Scholar 

  • Coriell, S. R., M. R. Cordes, W. J. Boettinger and R. F. Sekerka (1980) Convective and interfacial instabilities during unidirectional solidification of a binary alloy. J. Cryst. Growth, 49 (1): 13–28.

    Google Scholar 

  • Cox, G. F. N. and W. F. Weeks (1974) Salinity variations in sea ice. J. Glaciol., 13 (67): 109–120.

    Google Scholar 

  • Cox, G. F. N. and W. F. Weeks (1975) Brine drainage and initial salt entrapment in sodium chloride ice. USA Cold Regions 85 p.

    Google Scholar 

  • Cox, G. F. N. and W. F. Weeks (1983) Equations for determining the gas and brine volumes in sea ice samples. J. Glaciol., 29 (102): 306–316.

    Google Scholar 

  • Dayton, P. K. and S. Martin (1971) Observations of ice stalactites in McMurdo Sound, Antarctica. J. Geophys. Res., 76: 1595–1599.

    Google Scholar 

  • Dunbar, M. and W. F. Weeks (1975) Interpretation of young ice forms in the Gulf of St. Lawrence using side-looking airborne radar and infrared imagery. USA Cold Regions Research and Engineering Laboratory, Research Report 337, 41 p.

    Google Scholar 

  • Edie, D. D. and D. J. Kirwan (1973) Impurity trapping during crystallization from melts. Ind. Eng. Chem. Fundam., 12: 100–106.

    Google Scholar 

  • Eide, L. and S. Martin (1975) The formation of brine drainage features in young sea ice. J. Glaciol., 14 (70): 137–154.

    Google Scholar 

  • Elbaum, C. (1959) Substructures in crystals grown from the melt. Prog. Met. Phys., 8: 203–253.

    Google Scholar 

  • England, A. W. (1975) Thermal microwave emission from a scattering layer. J. Geophys. Res., 80 (32): 4484–4496.

    Google Scholar 

  • Evans, S. (1965) Dielectric properties of snow and ice: A review. J. Glaciol., 5: 773.

    Google Scholar 

  • Farhadieh, R. and R. S. Tankin (1972) Interferometric study of freezing of sea water. J. Geophys. Res., 77: 1647–1657.

    Google Scholar 

  • Foldvik, A. and T. Kvinge, 1974: Conditional instability of sea water at the freezing point. Deep Sea Res., 21: 169–174.

    Google Scholar 

  • Frankenstein, G. and R. Garner (1967) Equations for determining the brine volume of sea ice from -0.5° to -22.9°C. J. Glaciol., 6 (48): 943–944.

    Google Scholar 

  • Fujino, K. and Y. Suzuki (1959) Observations on the process of ice rind formation on the surface of still water. Low Temp. Sci., A18: 149–155.

    Google Scholar 

  • Fujioka, T. and R. F. Sekerka (1974) Morphological stability of disc crystals. J. Cryst. Growth, 24 /25: 84–93.

    Google Scholar 

  • Fukutomi, T., K. Kusunoki and T. Nagashima (1949) On the formation of crystal ice and the structure of ice crust. Low Temp. Sci., 2: 73–76.

    Google Scholar 

  • Fukutomi, T., M. Saito and Y. Kudo (1953) Study of sea ice (the 16th report): On the structure of ice rind, especially on the structure of thin ice sheet and ice-sheet block. Low Temp. Sci., 9: 113–123.

    Google Scholar 

  • Fung, A. (1981) Microwave scattering and emission from sea ice. In Proceedings of Second Workshop on Microwave Remote Sensing of Sea Ice and Icebergs, NASA Langley Research Center.

    Google Scholar 

  • Garrison, D. and K. R. Buck (1982) Sea ice algal communities in the Weddell Sea. I: Biomass distribution and the physical environment. AGU-ASLO Ocean Sciences Meeting, San Antonio. (Abstract in EOS, 63 ).

    Google Scholar 

  • Garrison, D. L., S. F. Ackley and K. R. Buck (1983) A physical mechanism for establishing algal populations in frazil ice. Nature, 306: 363–365.

    Google Scholar 

  • Gitterman, K. E. (1937) Thermal analysis of sea water. Trudy Solyanoy Lab. Akad. Nauk SSSR, 15 (1).

    Google Scholar 

  • Glen, J. W. (1955) Comments on the paper of Professor Arakawa on the growth of ice crystals in water. J. Glaciol., 2: 483.

    Google Scholar 

  • Golden, K. M. and S. F. Ackley (1981) Modeling of anisotropic electromagnetic reflections from sea ice. J. Geophys. Res., 86 (C9): 8107–8116.

    Google Scholar 

  • Golovkov, M. P. (1936) K petrografii l’da Karskogo moria (The petrography of Kara sea ice). Trudy Vses. Arkt. Inst. Leningrad, 60: 7–40.

    Google Scholar 

  • Gow, A. J. and S. Epstein (1972) On the use of stable isotopes to trace the origins of ice in a floating ice tongue. J. Geophys. Res., 77 (33): 6552–6557.

    Google Scholar 

  • Gow, A. J. and D. Langston (1977) Growth history of lake ice in relation to its stratigraphie, crystalline and mechanical structure. USA Cold Regions Research and Engineering Laboratory, CRREL Report 77–1, 24 p.

    Google Scholar 

  • Gow, A. J. and W. F. Weeks (1977) The internal structure of fast ice near Narwhal Island, Beaufort Sea, Alaska. USA Cold Regions Research and Engineering Laboratory, CRREL Report 77–29, 8 p.

    Google Scholar 

  • Gow, A. J., W. F. Weeks, J. W. Govoni and S. F. Ackley (1981) Physical and structural characteristics of sea ice in McMurdo Sound. Ant. J. U.S., 16 (5): 94–95.

    Google Scholar 

  • Gow, A. J., S. F. Ackley, W. F. Weeks and J. W. Govoni (1982) Physical and structural characteristics of Antarctic sea ice. In Third International Symposium on Antarctic Glaciology, Ohio State University, Ann. Glaciol., 3: 113–117.

    Google Scholar 

  • Gudmandsen, P. (1971) Electromagnetic probing of ice. In Electromagnetic Probing in Geophysics ( J. R. Wait, Ed.), Golem Press, Boulder, Colorado, p. 321–338.

    Google Scholar 

  • Hallett, J. (1960) Crystal growth and the formation of spikes in the surface of supercooled water. J. Glaciol., 3: 698–702.

    Google Scholar 

  • Hardy, S. C. and S. R. Coriell (1973) Surface tension and interface kinetics of ice crystals freezing and melting in sodium chloride solutions. J. Cryst. Growth, 20: 292–300.

    Google Scholar 

  • Harrison, J. D. (1965) Measurement of brine droplet migration in ice. J. Appl. Phys., 36 (12): 3811–3815.

    Google Scholar 

  • Harrison, J. D. and W. A. Tiller (1963) Controlled freezing of water. In Ice and Snow: Properties, Processes, and Applications ( W. D. Kingery, Ed.), M.I.T. Press, Cambridge, Mass., p. 215–225.

    Google Scholar 

  • Hillig, W. B. (1958) The kinetics of freezing of ice in the direction perpendicular to the basal plane. In Growth and Perfection of Crystals ( R. H. Doremus, Ed.), Wiley, New York, p. 350–359.

    Google Scholar 

  • Hillig, W. B. (1959) Kinetics of solidification from nonmetallic liquids. In Kinetics of High Temperature Processes ( W. D. Kingery, Ed.), Wiley, New York, p. 127–135.

    Google Scholar 

  • Hillig, W. B. and D. Turnbull (1956) Theory of crystal growth in undercooled pure liquids. J. Chem. Phys., 24: 914.

    Google Scholar 

  • Hobbs, P. (1974) Ice Physics. Oxford University Press, 837 p.

    Google Scholar 

  • Hoekstra, P., T. E. Osterkamp and W. F. Weeks (1965) The migration of liquid inclusions in single ice crystals. J. Geophys. Res., 70 (20): 5035–5041.

    Google Scholar 

  • Johnson, N. G. (1943) Studies av isen i Gullmarfjorden. Svenska Hydrog. — Biol. Komm. Skr., Ny Serie: Hydrografi, 18: 1–21.

    Google Scholar 

  • Jones, D. R. H. (1973) The temperature-gradient migration of liquid droplets through ice. J. Cryst. Growth, 20: 145–151.

    Google Scholar 

  • Jones, D. R. H. (1974) Determination of the kinetics of ice-brine interfaces from the shapes of migrating droplets. J. Cryst. Growth, 26: 177–17 9.

    Google Scholar 

  • Katsaros, K. B. (1973) Supercooling at the surface of an arctic lead. J. Phys. Ocean., 3 (4): 482–486.

    Google Scholar 

  • Kawamura, T. and N. Ono (1980) Freezing phenomena at seawater surface opening in polar winter. Ill: Measurement of crystallo-graphic orientation of newly grown sea ice. Low Temp. Sci., A39: 175–180.

    Google Scholar 

  • Kingery, W. D. and W. H. Goodnow (1963) Brine migration in salt ice. In Ice and Snow: Properties, Processes and Applications ( W. D. Kingery, Ed.), MIT Press, Cambridge, Mass., p. 35–47.

    Google Scholar 

  • Knight, C. A. (1962a) Curved growth of ice on surfaces. J. Appl. Phys., 33: 1808–1815.

    Google Scholar 

  • Knight, C. A. (1962b) Migration of liquid inclusions parallel to the c-axis in single ice crystals: An origin for some stria-tions. Can. J. Phys., 40: 1681–1682.

    Google Scholar 

  • Knight, C. A. (1962c) Polygonization of aged sea ice. J. Geol., 70: 240–246.

    Google Scholar 

  • Knight, C. A. (1962d) Studies of arctic lake ice. J. Glaciol., 4: 319–335.

    Google Scholar 

  • Koerner, R. M. (1963) The Devon Island expedition, 1960–64. Arctic, 16: 57–62.

    Google Scholar 

  • Kohnen, H. (1976) On the dc resistivity of sea ice. Z. Gletsch. und Glaz., 11 (2): 143–154.

    Google Scholar 

  • Kovacs, A. and R. Morey (1978) Radar anisotropy of sea ice due to preferred azimuthal orientation of the horizontal c-axes of ice crystals. J. Geophys. Res., 83 (C12): 6037–6046.

    Google Scholar 

  • Kovacs, A. and R. M. Morey (1980) Investigations of sea ice anisotropy, electromagnetic properties, strength, and under-ice current orientation. USA Cold Regions Research and Engineering Laboratory, CRREL Report 80–20, 18p.

    Google Scholar 

  • Kumai, M. and K. Itagaki (1953) Cinematographic study of ice crystal formation in water. J. Faculty Sci., Hokkaido Univ., Ser. II, 4: 235–246.

    Google Scholar 

  • Lake, R. A. and E. L. Lewis (1970) Salt rejection by sea ice during growth. J. Geophys. Res., 75 (3): 583–597.

    Google Scholar 

  • Landauer, J. K. and H. Plumb (1956) Measurements of anisotropy of thermal conductivity of ice. USA Snow, Ice and Permafrost Research Establishment, Research Report 16.

    Google Scholar 

  • Langhorne, P. (1980) Crystal anisotropy in sea ice in the Beaufort Sea. In Proceedings, Workshop on Remote Estimation of Sea Ice Thickness, Memorial University, St. Johns, Newfoundland, Canada, C-CORE Pub. 80–5, p. 189–224.

    Google Scholar 

  • Langhorne, P. J., J. R. Rossiter and T. E. Keliher (1980) Remote estimation of the properties of sea ice, ice core analysis’, Beaufort Sea, March 1979. Memorial University, St. Johns, Newfoundland, Canada, C-CORE Pub. 80–7, 172 p.

    Google Scholar 

  • Langleben, M. P. (1959) Some physical properties of sea ice. II. Can. J. Phys., 37: 1438–1454.

    Google Scholar 

  • Lewis, E. L. (1967) Heat flow through winter ice. In Physics of Snow and Ice (H. Oura, Ed.), Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan, Vol. 1, No. 1, p. 611–631.

    Google Scholar 

  • Lewis, E. L. and R. A. Lake (1971) Sea ice and supercooled water. J. Geophys. Res., 76 (24): 5836–5841.

    Google Scholar 

  • Lofgren, G. and W. F. Weeks (1969) Effect of growth parameters on the substructure spacing in NaCl ice crystals. J. Glaciol., 8, (52): 153–164.

    Google Scholar 

  • Lonsdale, K. (1958) The structure of ice. Proc. Roy. Soc., 247: 424–434.

    Google Scholar 

  • Lyons, J. B., S. M. Savin, and A. J. Tamburi (1971) Basement ice, Ward Hunt Ice Shelf, Ellesmere Island, Canada. J. Glaciol., 10, (58): 93–100.

    Google Scholar 

  • Macklin, W. C, and B. F, Ryan (1966) Habits of ice grown in supercooled water and aqueous solutions. Phil. Mag., 14: 847–860.

    Google Scholar 

  • Malmgren, F. (1927) On the properties of sea ice. In Scientific Results of the Norwegian North Pole Expedition “Maud,” 1918–1925, Vol. 1, No. 5, 67 p.

    Google Scholar 

  • Martin, S. (1972) Ice stalactites and the desalination of sea ice. Naval Res. Rev., XXV (9): 17–26.

    Google Scholar 

  • Martin, S. (1974) Ice stalactites: Comparison of a laminar flow theory with experiment. J. Fluid Mech., 63 (1): 51–79.

    Google Scholar 

  • Martin, S. (1979) A field study of brine drainage and oil entrapment in sea ice. J. Glaciol., 22 (88): 473–502.

    Google Scholar 

  • Martin, S. (1981) Frazil ice in rivers and oceans. Ann. Rev. Fluid Mech., 13: 379–397.

    Google Scholar 

  • Martin, S. and P. Kauffman (1974) The evolution of under-ice melt ponds, or double diffusion at the freezing point. J. Fluid Mech., 64 (3): 507–527.

    Google Scholar 

  • Martin, S. and P. Kauffman (1981) A field and laboratory study of wave damping by grease ice. J. Glaciol., 27 (96): 283–314.

    Google Scholar 

  • Maxwell, J. C. (1891) Electricity and Magnetism, Dover, New York, Third Ed., Vol. I.

    Google Scholar 

  • Maykut, G. and N. Untersteiner (1971) Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76: 1550–1576.

    Google Scholar 

  • Meeks, D. C., G. A. Poe and R. O. Ramseier (1974) A study of microwave emission properties of sea ice — AIDJEX 1972. Aerojet Electrosysterns Company, Azusa, California, Final Report No. 1786FR-1.

    Google Scholar 

  • Mellor, M., (1983) Mechanical behavior of sea ice. USA Cold Regions Research and Engineering Laboratory, Monograph 83–1, 102 p.

    Google Scholar 

  • Myerson, A. S. and D. J. Kirwan (1977a) Impurity trapping during dendritic crystal growth. 1: Computer simulation. Ind. Eng. Chem., Fund., 16 (4): 414–420.

    Google Scholar 

  • Myerson, A. S. and D. J. Kirwan (1977b) Impurity trapping during dendritic crystal growth. 2: Experimental results and correlation. Ind. Eng. Chem. Fund., 16 (4): 420–425.

    Google Scholar 

  • Nagle, J. F. (1966) Lattice statistics of hydrogen bonded crystals.

    Google Scholar 

  • I: The residual entropy of ice. J. Math. Phys., 7: 1484–1491.

    Google Scholar 

  • Nakawo, M. and N. K. Sinha (1981) Growth rate and salinity profile of first-year sea ice in the high Arctic. J. Glaciol., 27 (96): 315–330.

    Google Scholar 

  • Nakawo, M. and N. K. Sinha (1984) A note on brine layer spacing of first-year sea ice. Atmos.-Ocean, 22 (2): 193–206.

    Google Scholar 

  • Nelson, K. H. and T. G. Thompson (1954) Deposition of salts from sea water by frigid concentration. J. Marine Res., 13 (2): 166–182.

    Google Scholar 

  • Niedrauer, T. M. and S. Martin (1979) An experimental study of brine drainage and convection in young sea ice. J. Geophys. Res., 84 (C3): 1176–1186.

    Google Scholar 

  • Ono, N. (1965) Thermal properties of sea ice. II. A method for determining the K/c value of a non-homogeneous ice sheet. Low Temp. Sci., A23: 177–183.

    Google Scholar 

  • Ono, N. (1968) Thermal properties of sea ice. IV. Thermal constants of sea ice. Low Temp. Sci., A26: 329–349.

    Google Scholar 

  • Owston, P. G. (1958) The structures of ice I, as determined by X- ray and neutron diffraction analysis. Adv. Phys., 7: 171–188.

    Google Scholar 

  • Ozum, B. and D. J. Kirwan (1976) Impurities in ice crystals grown from stirred solutions. A.I.Ch. E. Sympos. Series, 72 (153): 1.

    Google Scholar 

  • Paige, R. A. (1966) Crystallographic studies of sea ice in McMurdo Sound, Antarctica. Naval Civil Engineering Laboratory, Technical Report R494, 31 pp.

    Google Scholar 

  • Paige, R. A. (1970) Stalactite growth beneath sea ice. Science, 167: 171–172.

    Google Scholar 

  • Paige, R. A. and R. A. Kennedy (1967) Strength studies of sea ice: Effect of load rate on ring tensile strength. Naval Civil Engineering Laboratory, Technical Report R545, 25 p.

    Google Scholar 

  • Pauling, L. (1935) Structure and entropy of ice and of other crystals with randomness of atomic arrangements. J. Am. Chem. Soc., 57: 2608–2684.

    Google Scholar 

  • Perey, F. G. J. and E. R. Pounder (1958) Crystal orientation in ice sheets. Can. J. Phys., 36: 494–502.

    Google Scholar 

  • Peterson, S. W. and H. A. Levy (1957) A single-crystal neutron diffraction study of heavy ice. Acta Crystallographica, 10: 70–76.

    Google Scholar 

  • Petrov, I. G. (1954–55) Fiziko-mekhanicheskiye svoystva i tol’- shchina ledyanogo pokrova (Physical and mechanical properties and thickness of ice cover). In Materialy Nablyudeniy Nauch-no-Issledovatel’skoy Dreyfuyushchey Stantsii 1950–51 Goda (Observations of the Drifting Research Station of 1950–51) (M. M. Somov, Ed.), Arkticheskiy Nauchno-Issledovatel’skiy Institut 2, Leningrad p. 103–165.

    Google Scholar 

  • Peyton, H. R. (1963) Some mechanical properties of sea ice. In Ice and Snow: Properties, Processes and Applications ( W. D. Kingery, Ed.), MIT Press, Cambridge, Mass., p. 107–113.

    Google Scholar 

  • Peyton, H. R. (1966) Sea ice strength. Geophysical Institute, University of Alaska Rept. UAG-182, 187 p.

    Google Scholar 

  • Peyton, H. R. (1968) Sea ice strength: Effects of load rates and salt reinforcement. In Arctic Drifting Stations (J. E. Sater, Ed. ), Arctic Institute of North America, p. 197–217.

    Google Scholar 

  • Pfann, W. G. (1958) Zone Melting. Wiley, New York, 230 p.

    Google Scholar 

  • Poe, G., A. Stogryn and A. T. Edgerton (1972) Microwave emission characteristics of sea ice. Aerojet General Corp., Report 1749R - 2.

    Google Scholar 

  • Poe, G. A., A. Stogryn, A. T. Edgerton and R. 0. Ramseier (1974) Study of microwave emission properties of sea ice. Aerojet General Corp., Report 1804FR-1.

    Google Scholar 

  • Pounder, E. R. and E. M. Little (1959) Some physical properties of sea ice. I. Can. J. Phys., 37: 443–473.

    Google Scholar 

  • Ragle, R. H. (1962) The formation of lake ice in a temperate climate. USA Army Cold Regions Research and Engineering Laboratory, Research Report 107, 22 p.

    Google Scholar 

  • Reeburgh, W. S. and M. S. Young (1982) New measurements of sulfate and chlorinity in natural sea ice. J. Geophys. Res., 88 (C5): 2559–2566.

    Google Scholar 

  • Richardson, C. and E. F. Keller (1966) The brine content of sea ice measured with a nuclear magnetic resonance spectrometer. J. Glaciol., 6 (43): 89–100.

    Google Scholar 

  • Ringer, W. E. (1906) De Veranderinger in Samenstelling van Zeewater by Het Bevriezen. Chemisch Weekblad, 3: 223–249.

    Google Scholar 

  • Rodhe, B. (1959) The Baltic ice code. Sveriges Meteorologiska och Hydrologiska Institut, Stockholm, Ser. E, No. 10, 59 p.

    Google Scholar 

  • Rohatgi, P. K. and C. M. Adams (1967a) Freezing rate distributions during unidirectional solidification of solutions. Trans. Metall. Soc. AIME, 239 (6): 850–857.

    Google Scholar 

  • Rohatgi, P. K. and C. M. Adams (1967b) Ice-brine dendritic aggregate formed on freezing of aqueous solutions. J. Glaciol., 6 (47): 663–679.

    Google Scholar 

  • Rosenberg, A. and W. A. Tiller (1957) The relationship between growth forms and the preferred direction of growth. Acta Metallurgica, 5: 565–573.

    Google Scholar 

  • Rutter, J. W. and B. Chalmers (1953) A prismatic substructure formed during solidification of metals. Can. J. Phys., 1: 15–39.

    Google Scholar 

  • Ryan, B. F. (1969) The growth of ice parallel to the basal plane in supercooled water and supercooled metal fluoride solutions. J. Cryst. Growth, 5: 284–288.

    Google Scholar 

  • Ryan, B. F. and W. C. Macklin (1968) The growth of ice in supercooled aqueous solutions. J. Cryst. Growth, 2: 337–340.

    Google Scholar 

  • Saito, T. and N. Ono (1980) Percolation of sea ice. II: Brine drainage channels in young sea ice. Low Temp. Sci., A39: 127–132.

    Google Scholar 

  • Savel’ev, B. A. (1958) Izucheniyu l’dov v rayone dreyfa stantsii SP-4 v period tayaniya i razrushenya ikh v 1955 g (Study of ice in the region of the drift of station SP-4 during melting and break-up in 1955). Problemy Severa, 2: 47–79.

    Google Scholar 

  • Savel’ev, B. A. (1963) Structure, composition, and properties of the ice cover of sea and fresh waters. Izd. Moskovskogo Univ., 541 p.

    Google Scholar 

  • Schwarz, J. and W. F. Weeks (1977) Engineering properties of sea ice. J. Glaciol., 19 (81): 499–530.

    Google Scholar 

  • Schwarzacher, W. (1959) Pack-ice studies in the Arctic Ocean. J. Geophys. Res., 64: 2357–2367.

    Google Scholar 

  • Schwerdtfeger, P. (1963) The thermal properties of sea ice. J. Glaciol., 4 (36): 789–807.

    Google Scholar 

  • Seidensticker, R. G. (1965) Comment on paper by P. Hoekstra, T. E. Osterkamp and W. F. Weeks, “The migration of liquid inclusions in single ice crystals.” J. Geophys. Res., 71 (8): 2180–2181.

    Google Scholar 

  • Sekerka, R. F. (1968) Morphological stability. J. Cryst. Growth, 3 /4: 71–81.

    Google Scholar 

  • Sekerka, R. F., R. G. Seidensticker, D. R. Hamilton and J. D. Harrison (1967) Investigation of desalination by freezing. Office of Saline Water, Westinghouse Research Laboratories, Pittsburgh, Contract No. 14–01–0001–605, Final Report.

    Google Scholar 

  • Seligman, G. (1949) Growth of glacier crystal. J. Glaciol., 1: 254–268.

    Google Scholar 

  • Serikov, M. I. (1963) Structure of Antarctic sea ice. Infor. Bull. Sov. Antarct. Exped., 4 (5): 265–266.

    Google Scholar 

  • Serson, H. V. (1972) Investigation of a plug of multi-year old sea ice in the mouth of Nansen Sound. Defence Research Establishment, Ottawa, Technical Note 72–6, 4 p.

    Google Scholar 

  • Sharp, R. P. (1947) Suitability of ice for aircraft landings. Trans. Am. Geophys. Union, 28: 111–119.

    Google Scholar 

  • Shumskii, P. A. (1955) K izucheniiu l’dov severnogo ledovitogo okeana (A study of ice in the Arctic Ocean). Vestnik Akad. Nauk SSSR, 25 (2): 33–38.

    Google Scholar 

  • Sinha, N. K. (1977) Technique for studying structure of sea ice. J. Glaciol., 18 (79): 315–323.

    Google Scholar 

  • Smith, D. D. (1964) Ice lithologies and structure of ice island Arlis II. J. Glaciol., 5 (37): 17–38.

    Google Scholar 

  • Smith, V. G., W. A. Tiller and J. W. Rutter (1955) A mathematical analysis of solute redistribution during solidification. Can. J. Phys., 33: 723–745.

    Google Scholar 

  • Stander, E. and G. A. Gidney (1980) The measurement of finite strain in sea ice by impulse radar techniques. In Proceedings Workshop on Sea Ice Field Measurement, Memorial University, St. Johns, Newfoundland, Canada, C-CORE Pub. 80–21, p. 127–164.

    Google Scholar 

  • Stogryn, A. (1970) The brightness temperature of a vertically structured medium. Radio Science, 5 (12): 1397.

    Google Scholar 

  • Stogryn, A. (1971) Equations for calculating the dielectric constant of saline water at GHz frequencies. IEEE Trans. Microw. Theory Tech., 19 (8): 273.

    Google Scholar 

  • Stratton, J. (1941) Electromagnetic Theory. McGraw-Hill, New York, p. 563–573.

    Google Scholar 

  • Suzuki, Y. (1955) Observations of ice crystals formed on sea surface. J. Ocean. Soc. Japan, 11: 123–126.

    Google Scholar 

  • Suzuki, Y. (1967) On disorder entropy of ice. In Physics of Snow and Ice (H. Oura, Ed.), Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan, Vol. 1, No. 1, p. 21–41.

    Google Scholar 

  • Swinzow, G. K. (1966) Ice cover of an arctic proglacial lake. USA Cold Regions Research and Engineering Laboratory, Research Report 155, 43 p.

    Google Scholar 

  • Tabata, T. (1960) Studies on the mechanical properties of sea ice. V: Measurement of flexural strength. Low Temp. Sci., A19: 187–201.

    Google Scholar 

  • Tabata, T. and N. Ono (1957) On the structure of sea ice. Low Temp. Sci., A16: 197–210.

    Google Scholar 

  • Tabata, T., and N. Ono (1962) On the crystal lographic study of several kinds of ice. Low Temp. Sci., A20: 199–214.

    Google Scholar 

  • Taylor, L. D. and J. B. Lyons (1959) Ice structures, Angiussaq Lake, northwest Greenland. Geophysics Research Directorate, Air Force Cambridge Research Center, TN-59–461, 33 p.

    Google Scholar 

  • Tiller, W. A. (1962) Effect of grain boundaries on solute partitioning during progressive solidification. Acta Metallurgica, 1 (4): 428–437.

    Google Scholar 

  • Tiller, W. A. (1963) Migration of a liquid zone through a solid. J. Appl. Phys., 34 (9): 2757–2762.

    Google Scholar 

  • Tiller, W. A., K. A. Jackson, J. W. Rutter and B. Chalmers (1953) The redistribution of solute atoms during the solidification of metals. Acta Metallurgica, 1: 428–437.

    Google Scholar 

  • Tinga, W. R., W. A. Voss and D. F. Blossey (1973) Generalized approach to multiphase dielectric mixture theory. J. Appl. Phys., 44 (9): 3897–3903.

    Google Scholar 

  • Tsurikov, V. L. (1974) Statistics of salt composition in sea ice. Oceanology, 14 (3): 360–367.

    Google Scholar 

  • Tsurikov, V. L. (1976) Liquid Phase in Sea Ice. Nauka, Moscow, 210 p.

    Google Scholar 

  • Tsurikov, V. L. and Tsurikova, A. P. (1972) The brine content of sea ice (statement of the problem). Oceanology, 12 (5): 663–672.

    Google Scholar 

  • Turner, J. S. (1973) Buoyancy Effects in Fluids. Cambridge University Press, 367 p.

    Google Scholar 

  • U.S. Navy Hydrographie Office (1952) A functional glossary of ice terminology. Washington, D.C., 88 p.

    Google Scholar 

  • Untersteiner, N. (1961) On the mass and heat budget of arctic sea ice. Arch. Meteorol. Geophys. Biok., 12: 151–182.

    Google Scholar 

  • Untersteiner, N. (1968) Natural desalination and equilibrium salinity profile of perennial sea ice. J. Geophys. Res., 73 (4): 1251–1257.

    Google Scholar 

  • Untersteiner, N. and F. Badgley (1958) Preliminary results of thermal budget studies on arctic pack ice during summer and autumn. In Arctic Sea Ice, U.S. National Academy of Sciences–National Research Council, Pub. 598, p. 85–98.

    Google Scholar 

  • Vant, M. R., R. O. Ramseier and V. Makros, 1975: The complex dielectric constant of sea ice at frequencies in the range 0.1–40 GHz. J. Appl. Phys., 49 (3): 1264–1280.

    Google Scholar 

  • Vittoratoë, E. S. (1979) Existence of oriented sea ice by the McKenzie Delta. In POAC 79: Proceedings, Fifth International Conference on Port and Ocean Engineering Under Arctic Conditions, University of Trondheim, Trondheim, Norway, p. 643–650.

    Google Scholar 

  • Wakatsuchi, M. (1977) Experiments on haline convection induced by freezing of sea water. Low Temp. Sci., A35: 249–258.

    Google Scholar 

  • Walker, E. R. and P. Wadhams (1979) Thick sea-ice floes. Arctic, 32 (2): 140–147.

    Google Scholar 

  • Walton, D. and B. Chalmers (1959) The origin of the preferred orientation in the columnar zone of ingots. Trans. Metal. Soc. Am. Inst. Min. Met. Eng., 215: 447–457.

    Google Scholar 

  • Walton, D., W. A. Tiller, J. W. Rutter and W. C. Winegard (1955) Instability of a smooth solid-liquid interface during solidification. J. Metals 7, Eng., 215: 447–457.

    Google Scholar 

  • Weeks, W. F. (1958) The structure of sea ice: A progress report. In Arctic Sea Ice, U.S. National Academy of Sciences–National Research Council, Pub. 598, p. 96–98.

    Google Scholar 

  • Weeks, W. F. (1962) Tensile strength of NaCl ice. J. Glaciol., 4 (31): 25–52.

    Google Scholar 

  • Weeks, W. F. and O. S. Lee (1958) Observation on the physical properties of sea ice at Hopedale, Labrador. Arctic, 11: 134–155.

    Google Scholar 

  • Weeks, W. F. and W. L. Hamilton (1962) Pétrographie characteristics of young sea ice, Point Barrow, Alaska. Am. Mineral., 47: 945–961.

    Google Scholar 

  • Weeks, W. F. and O. S. Lee (1962) The salinity distribution in young sea ice. Arctic, 15: 92–108.

    Google Scholar 

  • Weeks, W. F. and A. Assur (1963) Structural control of the vertical variation of the strength of sea and salt ice. In Ice and Snow: Properties, Processes and Applications ( W. D. Kingery, Ed.), MIT Press, Cambridge, Mass., p. 258–276.

    Google Scholar 

  • Weeks, W. F. and A. Assur (1967) The mechanical properties of sea ice. USA Cold Regions Research and Engineering Laboratory, Monograph II-C3, 80 p.

    Google Scholar 

  • Weeks, W. F. and G. Lofgren (1967) The effective solute distribution coefficient during the freezing of NaCl solutions. In Physics of Snow and Ice (H. Oura, Ed.), Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan, Vol. 1, No. 1, p. 579–597.

    Google Scholar 

  • Weeks, W. F. and A. Assur (1969) Fracture of lake and sea ice. USA Cold Regions Research and Engineering Laboratory, Research Report 269, 77 p.

    Google Scholar 

  • Weeks, W. F. and A. J. Gow (1978) Preferred crystal orientations along the margins of the Arctic Ocean. J. Geophys. Res., 84 (CIO): 5105–5121.

    Google Scholar 

  • Weeks, W. F. and A. J. Gow (1980) Crystal alignments in the fast ice of arctic Alaska. J. Geophys. Res., 84 (C10): 1137–1146.

    Google Scholar 

  • Weller, G. E. (1968) The heat budget and heat transfer processes in Antarctic plateau ice and sea ice. ANARE Scientific Reports, Series A (IV), Glaciology, Pub. 102, 155 p.

    Google Scholar 

  • Wernick, J. H. (1956) Determination of diffusivities in liquid metals by means of temperature-gradient zone melting. J. Chem. Phys., 25 (1): 47–49.

    Google Scholar 

  • Whitman, W. G. (1926) Elimination of salt from sea water ice. Am. J. Sci., Ser. 5, 11 (62): 126 p.

    Google Scholar 

  • Wilson, J. T., J. H. Zumberge, and E. W. Marshall (1954) A study of ice on an inland lake. USA Snow, Ice and Permafrost Research Establishment, Technical Report 5, 78 p.

    Google Scholar 

  • Yen, Y. C. (1981) Review of thermal properties of snow, ice and sea ice. USA Cold Regions Research and Engineering Laboratory, CRREL Report 81–10, 27 p.

    Google Scholar 

  • Zotikov, I. A., V. S. Zagorodnov and J. V. Raikovski (1980) Core drilling through the Ross Ice Shelf (Antarctica) confirmed basal freezing. Science, 207 (4438): 1463–1465.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weeks, W.F., Ackley, S.F. (1986). The Growth, Structure, and Properties of Sea Ice. In: Untersteiner, N. (eds) The Geophysics of Sea Ice. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5352-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5352-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5354-4

  • Online ISBN: 978-1-4899-5352-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics