Skip to main content

Abstract

Felix Klein [1] once said that the concept of group is perhaps the most characteristic concept of 19th century mathematics. However, in his Erlangen Program (1872), an extraordinarily effective advertisement for the group concept, Klein does not make any attempt to “sell” it to the natural scientists. At that time he was probably too absorbed with geometry to think of other applications, but already a few years later his friend and one-time collaborator, Sophus Lie, in the preface to the third part of his celebrated “Theorie der Transformationsgruppen” wrote “The principles of mechanics have a group theoretic origin”. Soon afterwards, in 1904, this was explicitly proved by G. Hamel [2]. Little by little under the influence of Klein and of his school it began to be recognized that invariance under the group of the automorphisms of space-time was the true criterion of objectivity for the physical laws. Already in 1910 Klein [3] explicitly stated that relativity was synonymous with invariance under a group and Klein’s school systematically investigated the physical consequences of invariance under both finite and infinite dimensional Lie groups [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quoted by H. Weyl; Gruppentheorie und Quantenmechanik, Leipzig 1931, 2nd ed., p. 2; see also H. Weyl, Philosophy of Mathematics and Natural Science, Princeton, 1952, p. 28.

    Google Scholar 

  2. G. Hamel, Die Lagrange-Eulerschen Gleichungen der Mechanik, Zeit. f. Math. u. Physik., 50 (1904) 1.

    MATH  Google Scholar 

  3. F. Klein, Über die geometrischen Gründlagen der Lorentzgruppe, Jahresberichte der Deutschen Mathematikervereinigung, 19 (1910); reprinted in F. Klein, Gesammelte Mathematische Abhandlungen I, p. 553, Berlin, 1921.

    Google Scholar 

  4. B. Herglotz, Mechanik der deformierbaren Körpers vom Standpunkte der Relativitätstheorie, Ann. d. Physik, 36 (1911) 493; F. Engel, Uber die zehn allgemeine Integrale der klassischen Mechanik, Nachrichten d. kön. Gesellschaft der Wissenschaften Göttingen 70 (1916); F. Klein, Uber die Differentialgesetze für die Erhaltung von Impuls und Energie in der Einsteinschen Gravitationstheorie, ibid., 171 (1918); Uber der Integralform der Erhaltungssätze und die Theorie der Räumlich-geschlossen Welt, ibid., 394 (1919); E. Noether, Invariante beliebiger Differentialausdrücke, ibid., 1918 p. 37.

    Article  ADS  MATH  Google Scholar 

  5. E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren, Braunschweig 1931.

    Google Scholar 

  6. H. Weyl, Gruppentheorie und Quantenmechanik, Leipzig 1928.

    Google Scholar 

  7. C. N. Yang and R. L. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954) 191.

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Goldstone, Field Theories with superconductor solutions, N. Cimento, 19 (1961) 154

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on analogy with superconductivity I. and IL, Phys. Rev. 122 (1961) 345 and 129 (1961) 246; W. Heisenberg, Introduction to the unified field theory of elementary particles, London, 1966, where references to early papers can be found

    Article  ADS  Google Scholar 

  10. F. Gürsey, On the symmetries of strong and weak interactions, N. Cimento, 16 (1960) 230.

    Article  MATH  Google Scholar 

  11. E. Wigner, On the consequencees of the symmetry of the Nuclear Hamiltonian on the spectroscopy of Nuclei, Phys. Rev. 51 (1937) 106

    Article  ADS  Google Scholar 

  12. B. H. Flowers, Studies in j-j coupling, I. Classification of nuclear and atomic states, Proc. Roy. Soc. A, 212, (1952) 248

    Article  ADS  MATH  Google Scholar 

  13. J. P. Elliot, Collective motions in the nuclear shell model. I. Classification schemes for states of mixed configurations, ibid., 245 (1958) 129.

    ADS  Google Scholar 

  14. M. Gell-Mann, Symmetries of Baryons and Mesons, Phys. Rev. 125 (1962) 1067, 1084

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Y. Ne’eman, Derivation of Strong Interactions from Gauge Invariance, Nuclear Physics, 26 (1961) 222

    Article  MathSciNet  ADS  Google Scholar 

  16. F. Gürsey and L. A. Radicati, Spin and Unitary Spin Independence of Strong Interactions, Phys. Rev. Lett. 13 (1964) 173

    Article  MathSciNet  ADS  Google Scholar 

  17. B. Sakita, Supermultiplets of Elementary Particles, Phys. Rev. B1756 (1964) 136.

    Google Scholar 

  18. S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264; Abdus Salam, in: Elementary Particle Theory, N. Svartholm Ed., p. 367, Stockholm 1968

    Article  ADS  Google Scholar 

  19. J. Bjorken and S. L. Glashow, Baryon Resonances in W 3 symmetry, Phys. Lett. 11 (1964) 84

    Article  MathSciNet  Google Scholar 

  20. S. L. Glashow, J. Iliopoulos, and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D2 (1970) 1285.

    ADS  Google Scholar 

  21. P. W. Anderson, Random Phase Approximation in the Theory of Superconductivity, Phys Rev. 112 (1958) 1900; see also P. W. Anderson, Concepts in Solids, New York, 1963, 1975; J. Goldstone, Field Theories with Superconductor Solutions, N. Cimento, 19 (1961) 154; see also

    Article  MathSciNet  ADS  Google Scholar 

  22. B. D. Josephson, The discovery of tunneling Superconductivity, Rev. Mod. Phys. 46 (1974) 251. The earliest application to the fundamental interactions is probably

    Article  ADS  Google Scholar 

  23. J. Goldstone, Abdus Salam, S. Weinberg, Broken Symmetries, Phys. Rev. 127 (1962) 965. The application to gauge theories was first given by

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. P. H. Higgs, Broken Symmetries, Massless Particles and Gauge Fields, Phys. Letters 12 (1964) 132.

    Article  ADS  Google Scholar 

  25. Hesiodus, Theogonia, 115, 123.

    Google Scholar 

  26. S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, New Haven, 1969. This book contains extensive references to previous works on the subject.

    Google Scholar 

  27. H. Bénard, Les Tourbillons cellulaires dans une nappe liquide, Revue Générale des Sciences Pures et Appliquées, 11 (1900) 1261 and 1309. See also

    Google Scholar 

  28. Lord Rayleigh, On Convective Currents in a Horizontal Layer of Fluid when the higher Temperature is on the Under Side, Phil. Mag. 32 (1916) 529.

    Article  Google Scholar 

  29. E. L. Koschmieder, On convection on a uniformly heated plane, Beitr. Phys. Atmos., 39 (1965) 1.

    Google Scholar 

  30. J. Wesfreid, Y. Pomeau, M. Dubois, C. Normand, P. Bergé, Critical Effects in Rayleigh-Bénard convection, J. de Phys., 7 (1978) 725.

    Article  Google Scholar 

  31. F. Busse, The Stability of finite amplitude cellular convection and its relation to an extremum principle, J. Fluid Mech., 30 (1967) 625.

    Article  ADS  MATH  Google Scholar 

  32. D. H. Sattinger, Bifurcations and Symmetry Breaking in Applied Mathematics, Bull. Math. Soc. 3 (1980) 779.

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Curie, Sur la Symétrie dans les phénomènes physiques. Symétrie d’un champ électrique et d’un champ magnétique, Journal de Physique 3me Série 3, (1894) 393.

    MATH  Google Scholar 

  34. D. H. Constantinescu, L. Michel and L. A. Radicati, Spontaneous Symmetry Breaking from the Maclaurin and the Jacobi sequences, Journal de Physique, 40 (1979) 147.

    Article  ADS  Google Scholar 

  35. D. H. Sattinger, Group representaion theory, bifurcation theory and pattern formation, J. Functional Anal., 28 (1978) 58.

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Michel and L. A. Radicati, The geometry of the octet, Ann. Inst. Henry Poincaré Sect. A, 18 (1973) 185. Properties of the Breaking of Hadronic Internal Symmetry, Ann. of Physics, 66 (1971) 758.

    MathSciNet  MATH  Google Scholar 

  37. E. Cartan, Lecons sur la géométrie des espaces de Riemann, Paris 1946; see also M. F. Atiyah, Geometry of Yang-Mills Fields, Pisa 1979.

    Google Scholar 

  38. H. Weyl, Space, Time and Matter, New York, 1952, p. 220.

    Google Scholar 

  39. E. Wigner, The unreasonable effectiveness of Mathematics in the Natural Sciences, Communications in Pure and Applied Mathematics, 13 1960 1.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Radicati di Brozolo, L.A. (1984). Chaos and Cosmos. In: Bars, I., Chodos, A., Tze, CH. (eds) Symmetries in Particle Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5313-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5313-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5315-5

  • Online ISBN: 978-1-4899-5313-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics