Backlund Transformations and Geometric and Complex-Analytic Background for Construction of Completely Integrable Lattice Systems

  • D. V. Chudnovsky

Abstract

Topological and complex analytic background is given for the introduction of the concept of Backlund transformation (BT). Backlund transformation is introduced from the point of view of isomonodromy deformation. The axiom of permutability of BTs is equivalent to the Baxter-Zamolodchikov introduction of completely integrable quantum systems with factorized S-matrices. Many important concrete examples of classical and quantum completely integrable systems of field theory and statistical mechanics are considered.

Keywords

Manifold Coherence Assure Sine Tral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    D. V. Chudnovsky, G. V. Chudnovsky, Phys. Lett. 73A (1979) 292; Phys. Lett. 74A (1979) 185MathSciNetADSCrossRefGoogle Scholar
  2. [2].
    V. E. Zakharov, A. V. Mikhailov, ZhETP, 74 (1978) 1953.MathSciNetGoogle Scholar
  3. [3].
    D. V. Chudnovsky, Cargese lectures 1979 in Bifurcation Phenomena in Mathematical Physics and Related Topics, D. Reidel 1980, 385.Google Scholar
  4. [4].
    D. Levi, O. Ragnisco, and M. Bruschi, Nuovo Cimento 58A (1980) 56.MathSciNetADSCrossRefGoogle Scholar
  5. [5].
    D. Levi, R. Benguria, Proc. Nat. Acad. Sci. USA 77 (1980) 5025.MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6].
    D. Levi, J. Phys. A. Math. Gen. 14 (1981) 1083.ADSCrossRefMATHGoogle Scholar
  7. [7].
    S. MacLane, Categories for the Working Mathematician, Springer, 1971.Google Scholar
  8. [8].
    A. B. Zamolodchikov, Comm. Math. Phys. 69 (1979) 165.MathSciNetADSCrossRefGoogle Scholar
  9. [9].
    A. B. Zamolodchikov, Soviet Physics Reports, Vol. II (1981) 2.Google Scholar
  10. [10].
    D. V. Chudnovsky, G. V. Chudnovsky, Phys. Lett. 98B (1981) 83.MathSciNetADSCrossRefGoogle Scholar
  11. [11].
    D. Iagolnitzer, Phys. Rev. 18 (1978) 1275.ADSGoogle Scholar
  12. [12].
    E. K. Sklanin, L. A. Takhtadjan, and L. D. Faddeev, Theor. Math. Phys., 80 (1980) 688.Google Scholar
  13. [13].
    M. Jackel, M.-M. Maillard, Seminaire E. N. S. (J. L. Verdier) Exp. No. 2 (1979–1980) (to be published).Google Scholar
  14. [14].
    A. B. Zamolodchikov, Comm. Math. Phys. (1981)Google Scholar
  15. [15].
    D. V. Chudnovsky, G. V. Chudnovsky, Phys. Lett. 79A (1980) 36.MathSciNetADSCrossRefGoogle Scholar
  16. [16].
    D. V. Chudnovsky, Phys. Lett. 81A (1981) 105.MathSciNetADSCrossRefGoogle Scholar
  17. [17].
    L. Schlesinger, Einfuhrung in die Theorie der Gewohnlichen Differentialgleichungen auf Functionentheoretischer grundlagen, 3 aufl, Berlin-Leipzig, 1922.Google Scholar
  18. [18].
    R. Garnier, Circolo Math. Palermo, 43 (1919) 155.CrossRefMATHGoogle Scholar
  19. [19].
    J. A. Lappo-Danilevsky, Mémoires sur la théorie des systèmes des equations différentielles lineares. Chelsea, 1953.Google Scholar
  20. [20].
    G. D. Birkhoff, Trans. of the Amer. Math. Soc. 10 (1909) 436; 11 (1910) 199.MathSciNetCrossRefMATHGoogle Scholar
  21. [21].
    F. D. Gakhov, Boundary value problems, Pergamon, 1966.Google Scholar
  22. [22].
    B. Riemann, Oeuvres mathématiques, Blanchard, Paris, 1968, 353MATHGoogle Scholar
  23. [23].
    D. V. Chudnovsky, Les Houches Lectures, 1979, Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Physics, Vol. 126, Springer, 1980, 352.Google Scholar
  24. [24].
    D. V. Chudnovsky, G. V. Chudnovsky, Lett. Math. Phys. 4 (1980) 373.MathSciNetADSCrossRefMATHGoogle Scholar
  25. [25].
    G. V. Chudnovsky, Lecture Notes in Physics, v. 120 (1980) 150.MathSciNetADSCrossRefGoogle Scholar
  26. [26].
    M. Sato, T. Miwa, M. Jimbo, Publ. RIMS, Kyoto Univ. 15 (1979) 201.MathSciNetCrossRefMATHGoogle Scholar
  27. [27].
    M. Jimbo, T. Miwa, RIMS preprints 227, 319, 327 (1980) Kyoto, Japan (to appear).Google Scholar
  28. [28].
    M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Studies Appl. Math. 53 (1974) 249.MathSciNetMATHGoogle Scholar
  29. [29].
    F. Calogero, A. Degasperis, Nuovo Cimento 32B (1976) 201; 39B (1977) 1.MathSciNetADSCrossRefGoogle Scholar
  30. [30].
    A. C. Newell, Proc. Royal Soc. London, A365 (1979) 283.MathSciNetADSCrossRefGoogle Scholar
  31. [31].
    G. V. Chudnovsky, Cargese lectures 1979 in Bifurcation Phenomena in Mathematical Physics and Related Topics, D. Reidel 1980, 449.Google Scholar
  32. [32].
    G. V. Chudnovsky, Les Houches Lectures, 1979, Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Physics, Vol. 126, Springer, 1980, 136.Google Scholar
  33. [33].
    H. Steudel, Ann. Physik 32 (1975) 205MathSciNetADSCrossRefGoogle Scholar
  34. R. Sasaki, Phys. Lett. 78A (1980) 7ADSCrossRefGoogle Scholar
  35. B. G. Konopelchenko, Phys. Lett. 74A (1979) 189.MathSciNetADSCrossRefGoogle Scholar
  36. [34].
    D. V. Chudnovsky and G. V. Chudnovsky, Phys. Lett. 82A (1981) 271; Phys. Lett. 74A (1981) 353MathSciNetADSCrossRefGoogle Scholar
  37. [35].
    R. Hirota, J. Phys. Soc. Japan 43 (1977) 2079.MathSciNetADSCrossRefGoogle Scholar
  38. [36].
    Backlund Transformations, edited by R. Miura, Lecture Notes in Math, Vol. 515, Springer, 1976.Google Scholar
  39. [37].
    D. V. Chudnovsky and G. V. Chudnovsky, Phys. Lett. 87A (1982) 325.MathSciNetADSCrossRefGoogle Scholar
  40. [38].
    D. V. Chudnovsky and G. V. Chudnovsky, J. Math. Pure. Appl. (1982)Google Scholar
  41. [39].
    D. V. Chudnovsky, Lecture Notes in Physics, V. 120, Springer 1980, 103.Google Scholar
  42. [40].
    V. E. Zakharov, A. B. Shabat, Funct. Anal. Appl. 13 (1979) 13MathSciNetGoogle Scholar
  43. [41].
    W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Interscience, 1965.Google Scholar
  44. [42].
    D. V. Chudnovsky and G. V. Chudnovsky, Phys. Rev. Lett. 47 (1981) 1093.MathSciNetADSCrossRefGoogle Scholar
  45. [43].
    D. V. Chudnovsky and G. V. Chudnovsky, J. Math. Phys. 22 (1981) 2518.MathSciNetADSCrossRefMATHGoogle Scholar
  46. [44].
    P. Lax, Comm. Pure Appl. Math. 21 (1968) 467.MathSciNetCrossRefMATHGoogle Scholar
  47. [45].
    E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge University Press, Cambridge, 1927.MATHGoogle Scholar
  48. [46].
    N. Ya. Vilenkin, Special Functions and the Theory of Group Represen tations, AMS, Rhode Island, 1968.Google Scholar
  49. [47].
    A. M. Polyakov, Phys. Lett. 82B (1979) 247.ADSCrossRefGoogle Scholar
  50. [48].
    R. Baxter, Trans. Royal Soc. London A289 (1978) 315.MathSciNetADSCrossRefGoogle Scholar
  51. [49].
    R. Baxter, Exactly Solved Models of Statistical Mechanics, Academic Press, 1982Google Scholar
  52. [50].
    L. Onsager, Phys. Rev. 65 (1944) 117.MathSciNetADSCrossRefMATHGoogle Scholar
  53. [51].
    R. Baxter, Ann. Phys. 76 (1973) 1, 25, 48.ADSCrossRefMATHGoogle Scholar
  54. [52].
    J. L. Burchnall, T. W. Chaundy, Proc. London Math. Soc. 21 (1922) 420. Proc. Royal Soc. London 118 (1928) 557.MathSciNetGoogle Scholar
  55. [53].
    H. F. Baker, Proc. Royal Soc. London, 118 (1928) 584.ADSCrossRefMATHGoogle Scholar
  56. [54].
    I. Cherednick, Dokl. Acad. Sci. USSR, 249 (1979) 1095.Google Scholar
  57. [55].
    L. A. Takhtadjan, L. D. Faddeev, Usp. Math. Nauk. 34 (1979) 13.Google Scholar
  58. [56].
    D. V. Chudnovsky, G. V. Chudnovsky, Lett. Math. Phys. 5 (1981) 43.MathSciNetADSCrossRefGoogle Scholar
  59. [57].
    M. Luscher, K. Pohlmeyer, Nucl. Phys. B137 (1978) 46.MathSciNetADSCrossRefGoogle Scholar
  60. [58].
    E. H. Lieb, Phys. Rev. 162 (1967) 162ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • D. V. Chudnovsky
    • 1
  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations