An Action in Superspace for SO(N)-Supergravity



We review the formulation of supergravity as the geometry of a bundle of frames with structure group SL(2, C)⊗SO(N) and base supermanifold ℳ with 4 even and 4N odd dimensions. The action principle is discussed and a construction is given of a superspace action ℐ that becomes stationary when the constraints and equations of motion of conventional SO(N)-models are imposed. One attractive feature of this action is that it contains Einstein’s action plus other terms which depend on the torsion and the Yang-Mills curvature.


Invariant Measure General Coordinate Transformation Bundle Space Superspace Action Solder Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    A. Salam and J. Strathdee, Nucl. Phys. B76 (1974) 477.MathSciNetADSCrossRefGoogle Scholar
  2. [2].
    J. Wess and B. Zumino, Nucl. Phys. B70 (1974) 39.MathSciNetADSCrossRefGoogle Scholar
  3. [3].
    S. W. MacDowell, Phys. Letters 80B, (1979) 212.MathSciNetADSCrossRefGoogle Scholar
  4. [4].
    J. Wess and B. Zumino, Phys. Letters 66B (1977) 361; Phys. Letters 74B (1978) 51.MathSciNetADSCrossRefGoogle Scholar
  5. J. Wess, R. Grimm and B. Zumino, Phys. Letters 73B (1978) 415.ADSGoogle Scholar
  6. [5].
    L. Brink, M. Gell-Mann, P. Ramond and J. Schwarz, Phys. Letters 74B (1978) 336; Phys. Letters 76B (1978) 417.MathSciNetADSCrossRefGoogle Scholar
  7. [6].
    R. Arnowitt and P. Nath, Phys. Letters 78B (1978) 581.ADSCrossRefGoogle Scholar
  8. [7].
    Y. Ne’emann and T. Regge, Phys. Letters 74B (1978) 31; Rivista del Nuovo Cimento, Vol. 1 Sec. 5 (1978) 1.Google Scholar
  9. [8].
    S. W. MacDowell, Proceedings of the VI Brazilian Symposium of Theoretical Physics, Rio de Janeiro, (1980). The notation and conventions used in the present article are the same as in this reference.Google Scholar
  10. [9].
    L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press; New York, London (1964).zbMATHGoogle Scholar
  11. [10].
    S. W. MacDowell, Supergravity, pg. 77; P. van Nieuwenhuizen and D. Z. Freedman, Editors; North Holland Publishing Company (1979).Google Scholar
  12. [11].
    W. Siegel and S. J. Gates, Jr., Nucl. Phys. B147 (1979) 77.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  1. 1.Physics Department, J. W. Gibbs LaboratoryYale UniversityNew HavenUSA

Personalised recommendations