Influence of Octahedral Subcells on the Electrical Properties and Bonding Characteristics of Molybdenum Carbides

  • L. E. Toth
  • J. Zbasnik
  • Y. Sato
  • W. Gardner

Abstract

Nowotny and coworkers(1) have demonstrated the importance of the octahedral subcell in the crystal structures of several hundred carbides and nitrides with complex crystal structures and compositions. Molybdenum is unique in that it forms more carbides than any other transition metal and that all these carbides have a common subcell. We have measured the heat capacities of αMoC1-x’, η MoC1-x’, Mo2C, and Mo2BC in the range 1–20°K, as well as the superconducting transition temperatures and superconducting critical fields of these phases and other molybdenum carbides. These measurements demonstrate the importance of the subcell in determining the electrical properties and they also clearly indicate the importance of the molybdenum-carbon interaction in the bonding of the molybdenum carbides.

Keywords

Entropy Porosity Nickel Anisotropy Carbide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Nowotny, W. Jeitschko, and F. Benesovsky, Planseeber, Pulvermet., 12, 31 (1964).Google Scholar
  2. 2.
    R. E. Rundle, Acta Cryst. 1, 180 (1948).CrossRefGoogle Scholar
  3. 3.
    H. Bilz, Z. Physik 153, 338 (1958).CrossRefGoogle Scholar
  4. 4.
    R. Kiessling, Met. Rev. 2, 77 (1957).CrossRefGoogle Scholar
  5. 5.
    P. Costa and R.R. Conte, Nucl. Met. AIME 10, 29 (1964).Google Scholar
  6. 6.
    Ibid p. 13–14.Google Scholar
  7. 7.
    R. G. Lye, RIAS Technical Report, 66–8, 1966.Google Scholar
  8. 8.
    T. H. Geballe, B.T. Matthias, J. P. Remeika, A. M. Clogston, V. B. Compton, J. P. Maita and H. J. Williams, Physics Z, 293 (1966).Google Scholar
  9. 9.
    L. E. Toth, C. M. Yen, L. G. Rosner and D.E. Anderson, J. Phys. Chem Solids, 27, 1815 (1966).CrossRefGoogle Scholar
  10. 10.
    E. Rudy, St. Windisch, A. J. Stosick and J. R. Hoffman, Trans. AIME 239, 1247 (1967).Google Scholar
  11. 11.
    F. Heiniger, E. Bucher and J. Muller, Phys. Kondens. Materie 5, 243 (1966).Google Scholar
  12. 12.
    B. T. Matthias, T. H. Geballe, and V. B. Compton, Rev. Mod. Phys. 35, 1 (1963).CrossRefGoogle Scholar
  13. 13.
    E. A. Lynton, Superconductivity, John Wiley, New York, 1962, p. 14.Google Scholar
  14. 14.
    F. W. Vahldiek, S. A. Mersol, C. T. Lynch, Technical Report AFML-TR-66–28, 1966.Google Scholar
  15. 15.
    H. Bittner and H. Goretzki, Mh. Chem. 91, 616 (1960) and 93, 1000 (1962).Google Scholar
  16. 16.
    H. Bittner, H. Goretzki, F. Benesovsky and H. Nowotny, Mh. Chem 94, 518 (1963).Google Scholar
  17. 17.
    J. Piper, Nucl. Met. AIME 10, 29 (1964).Google Scholar
  18. 18.
    E. Dempsey, Phil Mag, 8, 225 (1963).Google Scholar
  19. 19.
    R. Chang and L. J. Graham, J. Appl. Phys. 37, 3778 (1966).CrossRefGoogle Scholar
  20. 20.
    L. Kaufman, Trans AIME 224, 1006 (1964).Google Scholar
  21. 21.
    L. Toth, J. Less-Common Metals, 13, 129 (1967).CrossRefGoogle Scholar
  22. 22.
    V. Sadagopan and H. C. Gatos, J. Phys. Chem. Solids 27, 235 (1966).CrossRefGoogle Scholar
  23. 23.
    D. Martin, Phys. Rev., 141, 576 (1966).CrossRefGoogle Scholar
  24. 24.
    L. Toth and J. Zbasnik, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1968

Authors and Affiliations

  • L. E. Toth
    • 1
  • J. Zbasnik
    • 1
  • Y. Sato
    • 1
  • W. Gardner
    • 2
  1. 1.School of Mineral and Metallurgical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Semiconductor Research and Development LaboratoriesTexas InstrumentsDallasUSA

Personalised recommendations