Transport of Hexoses and Monocarboxylic Acids

  • Herman S. Bachelard

Abstract

Although the dependence of the mammalian brain, under normal conditions, on a regulär supply of glucose from the bloodstream has been acknowledged for 50 years or more, ways by which glucose passes to the brain and how it travels within the brain were ignored until relatively recently. Even though efforts were devoted to movement of glucose to the brain overall in the middle 1960s, any curiosity about transport of the sugar through the constituent cellular compartments began to emerge only within the last decade. Thus, in reviews of 20 years ago,1,2 the tacit assumption was that the glucose got into the brain by passive diffusion: there seems to have been no reported research that gave evidence of any carrier-mediated mechanism, though the possibility had been suggested.3

Keywords

Ischemia Lactate Pyruvate Neurol Galactose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geiger, A., 1962, Neurochemistry (K. A. C. Elliott, I. H. Page, and J. H. Quastel, eds.), Charles C Thomas, Springfield, Illinois, pp. 128–149.Google Scholar
  2. 2.
    Mcllwain, H., 1966, Biochemistry and the Central Nervous System, 3rd ed., Churchill, London.Google Scholar
  3. 3.
    Johnstone, R. M., and Scholefield, P. G., 1962, Neurochemistry (K. A. C. Elliott, I. H. Page, and J. H. Quastel, eds.), Charles C Thomas, Springfield, Illinois, pp. 376–398.Google Scholar
  4. 4.
    Fishman, R. A., 1964, Am. J. Physiol. 206: 836–844.PubMedGoogle Scholar
  5. 5.
    Crone, C., 1960, Acta Physiol. Scand. [Suppl.] 175:33–34.Google Scholar
  6. 6.
    Crone, C., 1965, J. Physiol. (Lond.) 181:103–113.Google Scholar
  7. 7.
    Anthonisen, P., and Crone, C., 1956, Acta Physiol. Scand. 37: 370–379.PubMedGoogle Scholar
  8. 8.
    LeFevre, P. G., and Peters, A. A., 1966, J. Neurochem. 13: 35–46.PubMedGoogle Scholar
  9. 9.
    Eidelberg, E., Fishman, J., and Harns, M. L., 1967, J. Physiol. (Lond.) 191: 47–57.Google Scholar
  10. 10.
    Bidder, T. G., 1968, J. Neurochem. 15: 867–874.PubMedGoogle Scholar
  11. 11.
    Himsworth, R. L., 1968, J. Physiol. (Lond.) 198: 467–477.Google Scholar
  12. 12.
    Joanny, P., Corriol, P., and Hillman, H., 1969, Biochem. J. 112: 367–371.PubMedGoogle Scholar
  13. 13.
    Bachelard, H. S., 1971, J. Neurochem. 13: 213–222.Google Scholar
  14. 14.
    Gilboe, D. D., and Betz, A. L., 1970, Am. J. Physiol. 219: 774–778.PubMedGoogle Scholar
  15. 15.
    Buschiazzo, P. M., Terrell, E. B. and Regen, D. M., 1970, Am. J. Physiol. 219: 1505–1513.PubMedGoogle Scholar
  16. 16.
    Cutler, R. W. P., and Sipe, J. C., 1971, Am. J. Physiol. 220: 1182–1186.PubMedGoogle Scholar
  17. 17.
    Bachelard, H. S., Daniel, P. M., Love, E. R., and Pratt, O. E., 1972, J. Physiol. (Lond.) 222: 149–150 P.Google Scholar
  18. 18.
    Bachelard, H. S., 1971, Brain Hypoxia (J. B. Brierley and B. S. Meldrum, eds.), Heinemann, London, pp. 251–260.Google Scholar
  19. 19.
    Bachelard, H. S., 1975, Brain Work (D. H. Ingvar and N. A. Lassen, eds.), Munksgaard, Copenhagen, pp. 126–141.Google Scholar
  20. 20.
    Crone, C., 1971, Ion Homeostasis of the Brain (B. K. Siesjö and S. C. S0rensen, eds.), Munksgaard, Copenhagen, pp. 52–62.Google Scholar
  21. 21.
    Crone, C., 1975, Brain Work (D. H. Ingvar and N. A. Lassen, eds.), Munksgaard, Copenhagen, pp. 142–143.Google Scholar
  22. 22.
    Bradbury, M., 1979, The Concept of a Blood-Brain Barrier, Wiley, Chichester.Google Scholar
  23. 23.
    Dempsey, E. W., 1958, Biology of Neuroglia (W. F. Windle, ed.), Charles C Thomas, Springfield, Illinois, p. 41.Google Scholar
  24. 24.
    Cohen, M. W., Gershenfeld, H. M., and Kuffler, S. W., 1968, J. Physiol. (Lond.) 197: 363–380.Google Scholar
  25. 25.
    Newburgh, R. W., and Rosenberg, R. W., 1972, Proc. Natl. Acad. Sei. U.S.A. 69: 1677–1680.Google Scholar
  26. 26.
    Yudilevich, D. L., 1970, Capillary Permeability (C. Crone and N. Lassen, eds.), Munksgaard, Copenhagen, pp. 115–129.Google Scholar
  27. 27.
    Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, O., Sakurada, O., and Shinohara, M., 1977, J. Neurochem. 28: 897–916.PubMedGoogle Scholar
  28. 28.
    Sokoloff, L., 1979, Acta Neurol. Scand. [Suppl.] 60: 640–649.Google Scholar
  29. 29.
    Crane, P. D., Braun, L. D., Cornford, E. M., Cremer, J. E., Glass, J. M., and Oldendorf, W. H., 1978, Strohe 9: 12–18.Google Scholar
  30. 30.
    Crane, P. D., Pardridge, W. M., Braun, L. D., Nyerges, A. M., and Oldendorf, W. H., 1981, J. Neurochem. 36: 1601–1604.PubMedGoogle Scholar
  31. 31.
    Ginsberg, M. D., and Reivich, M., 1979, Acta Neurol. Scand. [Suppl.] 60: 226–227.Google Scholar
  32. 32.
    Welsh, F. A., Greenberg, J. H., James, S. C., Ginsberg, M. D., and Reivich, M., 1979, Acta Neurol. Scand. [Suppl.] 60: 270–271.Google Scholar
  33. 33.
    Thurston, J. N., Pollack, P. G., and Warren, S. K., 1970, J. Clin. Invest. 49: 2139–2145.PubMedGoogle Scholar
  34. 34.
    Haymond, M. W., Karl, I. E., Keating, J. P., and de Vivo, D. C., 1978, Ann. Neurol. 3: 207–215.PubMedGoogle Scholar
  35. 35.
    Bachelard, H. S., 1974, Brain Biochemistry, Ist ed., Chapman and Hall, London, p. 51.Google Scholar
  36. 36.
    Gjedde, A., and Crone, C., 1975, Am. J. Physiol. 225: 1165–1169.Google Scholar
  37. 37.
    Crone, C., 1980, Microvasc. Res. 20: 133–149.PubMedGoogle Scholar
  38. 38.
    Gjedde, A., and Rasmussen, M., 1980, J. Neurochem. 35: 1375–1381.PubMedGoogle Scholar
  39. 39.
    Oldendorf, W. H., 1970, Brain Res. 24: 112–116.Google Scholar
  40. 40.
    Oldendorf, W. H., 1971, Am. J. Physiol. 221: 1629–1639.PubMedGoogle Scholar
  41. 41.
    Pardridge, W. M., and Oldendorf, W. H., 1975, Biochim. Biophys. Acta 382: 377–392.PubMedGoogle Scholar
  42. 42.
    Pardridge, W. M., and Oldendorf, W. H., 1977, J. Neurochem. 28: 5–12.PubMedGoogle Scholar
  43. 43.
    Daniel, P. M., Donaldson, J., and Pratt, O. E., 1974, J. Physiol. {Lond.) 237: 8–9 P.Google Scholar
  44. 44.
    Daniel, P. M., Donaldson, J., and Pratt, O. E., 1975, Med. Biol. Eng. 13: 214–227.PubMedGoogle Scholar
  45. 45.
    Bachelard, H. S., Daniel, P. M., Love, E. R., and Pratt, O. E., 1973, Proc. R. Soc Lond. [Biol.] 183: 71–82.Google Scholar
  46. 46.
    Gilboe, D. D., and Betz, A. L., 1970, Am. J. Physiol. 219: 774–779.PubMedGoogle Scholar
  47. 47.
    Gilboe, D. D., Betz, A. L., and Langebartel, D. A., 1973, J. Appl. Physiol. 34: 534–537.PubMedGoogle Scholar
  48. 48.
    Drewes, L. R., and Gilboe, D. D., 1973, J. Biol. Chem. 218: 2489–2496.Google Scholar
  49. 49.
    Mcllwain, H., and Bachelard, H. S., 1971, Biochemistry and the Central Nervous System, 4th ed., Churchill, London.Google Scholar
  50. 50.
    Bachelard, H. S., Campbell, W. J., and Mcllwain, H., 1962, Biochem. J. 84: 225–232.PubMedGoogle Scholar
  51. 51.
    Lund-Andersen, H., 1979, Physiol. Rev. 59: 305–352.PubMedGoogle Scholar
  52. 52.
    Bachelard, H. S., 1980, Cerebral Metabolism and Neural Function (J. V. Passonneau, R. A. Hawkins, W. D. Lust, and F. A. Welsh, eds.), Williams and Wilkins, Baltimore, pp. 106–119.Google Scholar
  53. 53.
    Bachelard, H. S., 1982, Chemisms of the Brain (R. Rodnight, H. S. Bachelard, and W. L. Stahl, eds.), Churchill, London, pp. 3–11.Google Scholar
  54. 54.
    Lust, W. D., Schwartz, J. P., and Passonneau, J. V., 1975, Mol. Cell Biochem. 8: 169–176.PubMedGoogle Scholar
  55. 55.
    Edström, A., Kanje, M., and Walum, E., 1975, J. Neurochem. 24: 395–401.PubMedGoogle Scholar
  56. 56.
    Walum, E., and Edström, A., 1976, Exp. Cell Res. 97: 15–22.PubMedGoogle Scholar
  57. 56a.
    Walum, E., and Edström, A., 1976, Exp. Cell Res. 100: 111–116.PubMedGoogle Scholar
  58. 57.
    Cummins, C. J., Glover, R. A., and Sellinger, O. Z., 1979, J. Neurochem. 33: 779–785.PubMedGoogle Scholar
  59. 58.
    Keller, K., Lange, K., and Noske, W., 1981, J. Neurochem. 36: 1012–1017.PubMedGoogle Scholar
  60. 59.
    Diamond, I., and Fishman, R. A., 1973, J. Neurochem. 20: 1533–1542.PubMedGoogle Scholar
  61. 60.
    Heaton, G. M., and Bachelard, H. S., 1973, J. Neurochem. 21: 1099–1108.PubMedGoogle Scholar
  62. 61.
    Eilam, Y., and Stein, W. D., 1974, Methods Membr. Biol. 2: 283–354.Google Scholar
  63. 62.
    Taylor, L. P., and Holman, G. D., 1981, Biochim. Biophys. Acta 642: 325–335.PubMedGoogle Scholar
  64. 63.
    Betz, A. L., Gilboe, D. D., Yudilevich, D. L., and Drewes, L. R., 1973, Am. J. Physiol. 225: 586–592.PubMedGoogle Scholar
  65. 64.
    Atkinson, A. J., and Weiss, M. F., 1969, Am. J. Physiol. 216: 1120–1126.PubMedGoogle Scholar
  66. 65.
    Fletcher, A. M., and Bachelard, H. S., 1978, J. Neurochem. 31: 233–238.PubMedGoogle Scholar
  67. 66.
    Betz, A. L., Cjetsey, J., and Goldstein, G. W., 1979, Am. J. Physiol. 236: C96 - C102.PubMedGoogle Scholar
  68. 67.
    Crone, C., and Thompson, A. M., 1970, Capillary Permeability (C. Crone and N. Lassen, eds.), Munksgaard, Copenhagen, pp. 446–455.Google Scholar
  69. 68.
    Gjedde, A., 1981, J. Neurochem. 36: 1463–1471.PubMedGoogle Scholar
  70. 69.
    Daniel, P. M., Love, E. R., and Pratt, O. E., 1980, J. Physiol. (Lond.) 305: 44P - 45 P.Google Scholar
  71. 70.
    Havrankova, J., Roth, J., and Brownstein, M., 1978, Nature 272: 827–829.PubMedGoogle Scholar
  72. 71.
    Margolis, R. U., and Altszuler, N., 1967, Nature 215: 1375–1376.PubMedGoogle Scholar
  73. 72.
    Owen, O. E., Reichard, G. A., Boden, G., and Schuman, C., 1974, Metab. Clin. Exp. 23: 7–13.PubMedGoogle Scholar
  74. 73.
    Gottstein, U., 1975, Brain Work (D. H. Ingvar and N. A. Lassen, eds.), Munksgaard, Copenhagen, pp. 144–148.Google Scholar
  75. 74.
    Butterfield, W. J. H., Adams, M. E., Seils, R. A., Sterky, G., and Whichelow, M. J., 1966, Lancet 1: 557–558.PubMedGoogle Scholar
  76. 75.
    Rafaelson, O. J., 1961, Metabolism 10: 99–105.Google Scholar
  77. 76.
    Nelson, S. R., Schulz, D. W., Passonneau, J. V., and Lowry, O. H., 1968, J. Neurochem. 15: 1271–1279.PubMedGoogle Scholar
  78. 77.
    Mellerup, E. T., and Rafaelson, O. J., 1969, J. Neurochem. 16: 777–783.PubMedGoogle Scholar
  79. 78.
    Strang, R. H. C., and Bachelard, H. S., 1971, J. Neurochem. 18: 1799–1807.PubMedGoogle Scholar
  80. 79.
    Daniel, P. M., Love, E. R., and Pratt, O. E., 1977, Proc. R. Soc. Lond. [Biol.] 196: 85–104.Google Scholar
  81. 80.
    Strang, R. H. C., and Bachelard, H. S., 1973, J. Neurochem. 20: 987–993.PubMedGoogle Scholar
  82. 81.
    Gjedde, A., and Rasmussen, M., 1980, J. Neurochem. 35: 1375–1381.PubMedGoogle Scholar
  83. 82.
    Phillips, M. E., and Coxon, R. V., 1976, J. Neurochem. 27: 643–645.PubMedGoogle Scholar
  84. 83.
    Crockett, M. E., Daniel, P. M., Love, E. R., Moorhouse, S. R., and Pratt, O. E., 1977, J. Physiol. (Lond.) 271: 24P - 26 P.Google Scholar
  85. 84.
    Betz, A. L., Gilboe, D. D., and Drewes, L. R., 1974, Brain Res. 67: 307–316.PubMedGoogle Scholar
  86. 85.
    Drewes, L. R., Gilboe, D. D., and Betz, A. L., 1973, Arch. Neurol. 29: 385–390.PubMedGoogle Scholar
  87. 86.
    Kleihues, P., 1973, Arch. Neurol. 29: 390.Google Scholar
  88. 87.
    Meldrum, B. S., and Horton, R. W., 1973, Electroencephalogr. Clin. Neurophysiol. 35: 59–66.PubMedGoogle Scholar
  89. 88.
    Horton, R. W., Meldrum, B. S., and Bachelard, H. S., 1973, J. Neurochem. 21: 507–520.PubMedGoogle Scholar
  90. 89.
    Diamond, I., and Fishman, R. A., 1973, Brain Res. 57: 239–245.PubMedGoogle Scholar
  91. 90.
    Krebs, H. A., 1961, Biochem. J. 80: 225–231.PubMedGoogle Scholar
  92. 91.
    Klee, G. B., and Sokoloff, L., 1967, J. Biol. Chem. 242: 3880–3883.PubMedGoogle Scholar
  93. 92.
    Owen, O. E., Morgan, A. O., Kemp, H. G., Sullivan, J. M., Herrera, M. G., and Cahill, G. F., 1967, J. Clin, luvest. 46: 1589–2595.Google Scholar
  94. 93.
    Hawkins, R. A., Williamson, D. H., and Krebs, H. A., 1971, Biochem. J. 122: 13–18.PubMedGoogle Scholar
  95. 94.
    Daniel, P. M., Love, E. R., Moorehouse, S. R., Pratt, O. E., and Wilson, P., 1971, Lancet 2: 637–638.PubMedGoogle Scholar
  96. 95.
    Itoh, T., and Quastel, J. H., 1970, Biochem. J. 116: 641–655.Google Scholar
  97. 96.
    Daniel, P. M., Love, E. R., Moorehouse, S. R., and Pratt, O. E., 1977, J. Neurol. Sei. 34: 1–13.Google Scholar
  98. 97.
    Daniel, P. M., Love, E. R., Moorehouse, S. R., Pratt, O. E., and Wilson, P., 1972, J. Physiol. (Lond.) 221: 22P - 23 P.Google Scholar
  99. 98.
    Oldendorf, W. H., 1973, Am. J. Physiol. 224: 1450–1453.PubMedGoogle Scholar
  100. 99.
    Cremer, J. E., Teal, H. M., and Cunningham, V. J., 1982, J. Neurochem. 39: 674–677.PubMedGoogle Scholar
  101. 100.
    Cremer, J. E., Braun, I.D., and Oldendorf, W. H., 1976, Biochim. Biophys. Acta 448: 633–637.PubMedGoogle Scholar
  102. 101.
    Gaitonde, M. K., and Richter, D., 1966, J. Neurochem. 13: 1309–1318.PubMedGoogle Scholar
  103. 102.
    Daniel, P. M., Love, E. R., and Pratt, O. E., 1978, J. Physiol. (Lond.) 274: 141–148.Google Scholar
  104. 103.
    Moore, T. J., Lione, A. P., and Regen, D. M., 1973, Am. J. Physiol. 225: 925–929.PubMedGoogle Scholar
  105. 104.
    Bachelard, H. S., 1980, Multidisciplinary Approach to Brain Development (C. DiBenedetta, R. Balazs, G. Gombos, and G. Porcellati, eds.), Elsevier, Amsterdam, pp. 3–14.Google Scholar
  106. 105.
    Moore, T. J., Lione, A. P., Sugden, M. C., and Regen, D. M., 1976, Am. J. Physiol. 230: 619–630.PubMedGoogle Scholar
  107. 106.
    Diem, K., and Lentner, C. (eds.), 1975, Documenta Geigy, 7th ed., Geigy, Macclesfield, p. 608.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Herman S. Bachelard
    • 1
  1. 1.Department of BiochemistrySt. Thomas’s Hospital Medical SchoolLondon SE1England

Personalised recommendations