Skip to main content

Lung Mechanics

  • Chapter

Abstract

Changes in the mechanical properties of the airways and airspaces are central to the disability in COPD. Increases in airway resistance, decreases in dynamic compliance and loss of lung recoil lead to hyperinflation of the lungs and chest wall and greatly increase the work of breathing. The unequal distribution of these changes leads to abnormal distribution of ventilation and is responsible for much of the inefficiency of the lungs as exchangers of O2 and CO2. In this chapter changes in lung mechanics will be considered at three stages: (1) mild disease as found in population studies of smokers, usually without symptoms; (2) established COPD with moderate to severe symptoms and airway obstruction studied in the stable state; (3) acute respiratory failure, defined as a significant deterioration of oxygenation from the chronic, stable state. A fuller account and bibliography of work on the first two stages up to 1985 is published elsewhere [1].

Keywords

  • Chronic Obstructive Pulmonary Disease
  • Chronic Obstructive Pulmonary Disease Patient
  • Acute Respiratory Failure
  • Total Lung Capacity
  • Inspiratory Muscle

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4899-4525-9_7
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-1-4899-4525-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pride, N.B. and Macklem, P.T. (1986) Lung mechanics in disease, in Handbook of Physiology, Mechanics of Breathing, sect. 3, vol. 3, ch. 37, (eds P.T. Macklem and J. Mead), American Physiological Society, Bethesda, pp. 659–92.

    Google Scholar 

  2. Macklem, P.T. and Permutt, S. (eds) (1979) Lung Biology in Health and Disease. The Lung in Transition between Health and Disease. vol. 12 Dekker, New York.

    Google Scholar 

  3. Wagner, E.M., Bleecker, E.R., Permutt S. and Liu, M.C. (1992) Peripheral airways resistance in smokers. Am. Rev. Respir. Dis., 146, 92–5.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Macklem, P.T., Proctor, D.F., and Hogg, J.C. (1970) The stability of peripheral airways. Respir. Physiol., 8, 191–203.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Leblanc, P., Ruff, F. and Milic-Emili, J. (1970) Effects of age and body position on ‘airway closure’ in man. J. Appl. Physiol., 28, 448–51.

    PubMed  CAS  Google Scholar 

  6. Buist, A.S., Vollmer, W.M., Johnson, L.R. and McCamant, L.E. (1988) Does the single-breath N2 test identify the smoker who will develop chronic airflow limitation? Am. Rev. Respir. Dis., 137, 293–301.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Woolcock, A.J., Vincent, N.J. and Macklem, P.T. (1969) Frequency dependence of compliance as a test for obstruction in the small airways. J. Clin. Invest., 48, 1097–106.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Coe, C.I., Watson, A., Joyce H. and Pride, N.B. (1989) Effects of smoking on changes in respiratory resistance with increasing age. Clin. Sci., 76, 487–94.

    PubMed  CAS  Google Scholar 

  9. Black, L.F., Offord, K. and Hyatt, R.E. (1974) Variability in the maximal expiratory flow volume curve in asymptomatic smokers and in non-smokers. Am. Rev. Respir. Dis., 110, 282–92.

    PubMed  CAS  Google Scholar 

  10. Dosman, J., Bode, F., Urbanetti, J. et al. (1975) The use of a helium-oxygen mixture during maximum expiratory flow to demonstrate obstruction in small airways in smokers. J. Clin. Invest., 55, 1090–9.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Hutcheon, M., Griffin, P., Levison, H. and Zamel, N. (1974) Volume of isoflow. A new test in detection of mild abnormalities of lung mechanics. Am. Rev. Respir. Dis., 110, 458–465.

    PubMed  CAS  Google Scholar 

  12. Cosio, M., Ghezzo, H., Hogg, J.C. et al. (1978) The relations between structural changes in small airways and pulmonary function tests. N. Engl. J. Med., 298, 1277–81.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Berend, N. and Thurlbeck, W.M. (1982) Correlations of maximum expiratory flow with small airway dimensions and pathology. J. Appl Physiol., Respirat. Environ. Exercise Physiol., 52, 346–51.

    CAS  Google Scholar 

  14. Meadows, J.A. III, Rodarte, J.R. and Hyatt, R.E. (1980) Density dependence of maximal expiratory flow in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis., 121, 47–54.

    PubMed  Google Scholar 

  15. Oloffson, J., Bake, B., Svardsudd, K. and Skoogh, B.E. (1986) The single breath N2-test predicts the rate of decline in FEV1. The study of men born in 1913 and 1923. Eur. J. Respir. Dis., 69, 46–56.

    Google Scholar 

  16. Stanescu, D.C., Rodenstein, D.O., Hoeven, C. and Robert A. (1987) ’sensitive tests’ are poor predictors of the decline in forced expiratory volume in one second in middle-aged smokers. Am. Rev. Respir. Dis., 135, 585–90.

    PubMed  CAS  Google Scholar 

  17. Cherniack, R.M. and McCarthy, D.S. (1979) Reversibility of abnormalities of pulmonary function, in Lung Biology in Health and Disease. The Lung in Transition between Health and Disease, (eds P.T. Macklem and S. Permutt), vol. 12. ch. 15, Dekker, New York, pp. 329–42.

    Google Scholar 

  18. Bedell, G.N., Marshall, R., DuBois, A.B. and Comroe, J.H. Jr. (1956) Plethysmographic determination of the volume of gas trapped in the lungs. J. Clin. Invest. 35, 664–70.

    PubMed  CrossRef  CAS  Google Scholar 

  19. Butler, J., Caro, C.G., Alcala, R. and DuBois, A.B. (1960) Physiological factors affecting airway resistance in normal subjects and in patients with obstructive respiratory disease. J. Clin. Invest, 39, 584–91.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Tierney, D.F. and Nadel, J.A. (1962) Concurrent measurements of functional residual capacity by three methods. J. Appl. Physiol., 17, 871–3.

    PubMed  CAS  Google Scholar 

  21. Rodenstein, D.O. and Stanescu, D.C. (1982) Reassessment of lung volume measurement by helium dilution and by body plethysmography in chronic airflow obstruction. Am. Rev. Respir. Dis., 126, 1040–4.

    PubMed  CAS  Google Scholar 

  22. Shore, S.A., Huk, O., Mannix, S. and Martin, J.G. (1983) Effect of panting frequency on the plethysmographic determination of thoracic gas volume in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis., 128, 54–9.

    PubMed  CAS  Google Scholar 

  23. Colebatch, H.J.H., Greaves, I.A. and Ng, C.K.Y. (1979) Exponential analysis of elastic recoil and aging in healthy males and females. J. Appl. Physiol. Respirat. Environ. Exercise Physiol., 47, 683–91.

    CAS  Google Scholar 

  24. Gibson, G.J., Pride, N.B., Davis, J. and Schroter, R.C. (1979) Exponential description of the static pressure-volume curve of normal and diseased lung. Am. Rev. Resp. Dis., 120, 799–811.

    PubMed  CAS  Google Scholar 

  25. Knudson, R.J. and Kaltenhorn, W.T. (1981) Evaluation of lung elastic recoil by exponential curve analysis. Respir. Physiol., 46, 29–42.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Greaves, I.A. and Colebatch, H.J.H. (1980) Elastic behaviour and structure of normal and emphysematous lungs post-mortem. Am. Rev. Resp. Dis., 121, 127–36.

    PubMed  CAS  Google Scholar 

  27. Pare, P.D., Brooks, L.A., Bates, J. et al. (1982) Exponential analysis of the lung pressure-volume curve as a predictor of pulmonary emphysema. Am. Rev. Respir. Dis., 126, 54–61.

    PubMed  CAS  Google Scholar 

  28. Nagai, A., Yamawaki, I., Thurlbeck, W.M. and Takizawa, T. (1989) Assessment of lung parenchymal destruction by using routine histological tissue sections. Am. Rev. Respir. Dis., 139, 313–9.

    PubMed  CrossRef  CAS  Google Scholar 

  29. Saetta, M., Ghezzo, H., Won Dong, K. et al. (1985) Loss of alveolar attachments in smokers. Am. Rev. Respir. Dis., 132, 894–900.

    PubMed  CAS  Google Scholar 

  30. Petty, T.L., Silvers, G.W. and Stanford, R.E. (1986) Radial traction and small airways disease in excised human lungs. Am. Rev. Respir. Dis., 133, 132–5.

    PubMed  CAS  Google Scholar 

  31. Hogg, J.C., Macklem, P.T., Nepszy, S.J. et al. (1969) Elastic properties of the centrilobular emphysematous space. J. Clin. Invest., 48, 1306–12.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Nagai, A. and Thurlbeck, W.M. (1991) Scanning electron microscopic observations of emphysema in humans. Am. Rev. Respir. Dis., 144, 901–8.

    PubMed  CrossRef  CAS  Google Scholar 

  33. Sharp, J.T., Van Lith, P., Vej Nuchprayoon, C. et al. (1968) The thorax in chronic obstructive lung disease. Am. J. Med., 44, 39–46.

    CrossRef  Google Scholar 

  34. Fry, D.L. and Hyatt, R.E. (1960) Pulmonary mechanics: a unified analysis of the relationship between pressure, volume, and gas flow in the lungs of normal and diseased subjects. Am. J. Med., 29, 672–89.

    PubMed  CrossRef  CAS  Google Scholar 

  35. Ingram, R.H., Jr and Schilder, D.P. (1966) Effect of gas compression on pulmonary pressure, flow, and volume relationships. J. Appl. Physiol., 21, 1821–6.

    PubMed  Google Scholar 

  36. Pride, N.B., Permutt, S., Riley, R.L. and Bromberger-Barnea, B. (1967) Determinants of maximal expiratory flow from the lungs. J. Appl. Physiol., 23, 646–62.

    PubMed  CAS  Google Scholar 

  37. Mead, J., Turner, J.M., Macklem, P.T. and Little, J.B. (1967) Significance of the relationship between lung recoil and maximum expiratory flow. J. Appl. Physiol., 22, 95–108.

    PubMed  CAS  Google Scholar 

  38. Leaver, D.G., Tattersfield, A.E. and Pride, N.B. (1973) Contributions of loss of lung recoil and of enhanced airways collapsibility to the airflow obstruction of chronic bronchitis and emphysema. J. Clin. Invest., 52, 2117–28.

    PubMed  CrossRef  CAS  Google Scholar 

  39. Macklem, P.T. and Wilson, N.J. (1965) Measurement of intrabronchial pressure in man. J. Appl. Physiol., 20, 653–63.

    PubMed  CAS  Google Scholar 

  40. Macklem, P.T., Fraser, R.G. and Brown, W.G. (1965) Bronchial pressure measurements in emphysema and bronchitis. J. Clin. Invest., 44, 897–905.

    PubMed  CrossRef  CAS  Google Scholar 

  41. Colebatch, H.J.H., Finucane, K.E. and Smith, M.M. (1973) Pulmonary conductance and elastic recoil relationships in asthma and emphysema. J. Appl. Physiol., 34, 143–53.

    PubMed  CAS  Google Scholar 

  42. Leaver, D.G., Tattersfield, A.E. and Pride, N.B. (1974) Bronchial and extrabronchial factors in chronic airflow obstruction. Thorax, 29, 394–400.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Grimby, G., Takishima, T., Graham, W. et al. (1968) Frequency dependence of flow resistance in patients with obstructive lung disease. J. Clin. Invest., 47, 1455–65.

    PubMed  CrossRef  CAS  Google Scholar 

  44. Hogg, J.C., Macklem, P.T. and Thurlbeck, W.M. (1968) Site and nature of airway obstruction in chronic obstructive lung disease. N. Engl. J. Med., 278, 1355–60.

    PubMed  CrossRef  CAS  Google Scholar 

  45. Silvers, G.W., Maisel, J.C., Petty, T.L. et al. (1974) Flow limitation during forced expiration in excised human lungs. J. Appl. Physiol., 36, 737–44.

    PubMed  CAS  Google Scholar 

  46. Van Brabandt, H., Cauberghs, M, Verbeken, E. et al. (1983) Partitioning of pulmonary impedance in excised human and canine lungs. J. Appl. Physiol., Respirat. Environ. Exercise Physiol., 55, 1733–42.

    Google Scholar 

  47. Verbeken, E.K., Cauberghs, M., Mertens, I. et al. (1992) Tissue and airway impedance of excised normal, senile and emphysematous lungs. J. Appl. Physiol., 72, 2343–53.

    PubMed  CAS  Google Scholar 

  48. Yanai, M., Sekizawa, K., Ohrui, T. et al. (1992). Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J. Appl. Physiol., 72, 1016–23.

    PubMed  CAS  Google Scholar 

  49. Hogg, J.C., Macklem, P.T. and Thurlbeck, W.M. (1969) The resistance of collateral channels in excised human lungs. J. Clin. Invest., 48, 421–31.

    PubMed  CrossRef  CAS  Google Scholar 

  50. Terry, P.B., Traystman, R.J., Newball, H.H. et al. (1978) Collateral ventilation in man. N. Engl. J. Med., 298, 10–15.

    PubMed  CrossRef  CAS  Google Scholar 

  51. Spiro, S.G., Hahn, H.L., Edwards, R.H.T. and Pride, N.B. (1975) An analysis of the physiological strain of submaximal exercise in patients with chronic obstructive bronchitis. Thorax, 30, 415–25.

    PubMed  CrossRef  CAS  Google Scholar 

  52. Sorli, J., Grassino, A., Lorange, G. and Milic-Emili, J. (1978) Control of breathing in patients with chronic obstructive lung disease. Clin. Sci. Mol. Med., 54, 295–304.

    PubMed  CAS  Google Scholar 

  53. Bellemare, F. and Grassino, A.E. (1983) Force reserve of the diaphragm in patients with chronic obstructive pulmonary disease. J. Appl. Physiol., 55, 8–15.

    PubMed  CAS  Google Scholar 

  54. Coussa, M.L., Guerin, C., Eissa, N.T. et al. (1993) Partitioning of work of breathing in mechanically ventilated COPD patients. J. Appl. Physiol., 75, 1711–9.

    PubMed  CAS  Google Scholar 

  55. Ninane, V., Yernault, J-C. and de Troyer, A. (1993) Intrinsic PEEP in patients with chronic obstructive pulmonary disease: role of expiratory muscles. Am. Rev. Respir. Dis., 148, 1037–42.

    PubMed  CrossRef  CAS  Google Scholar 

  56. Petrof, B.J., Legare, M., Goldberg, P. et al. (1990) Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am. Rev. Respir. Dis., 141, 281–9.

    PubMed  CrossRef  CAS  Google Scholar 

  57. McIlroy, M.B. and Christie, R.V. (1954) The work of breathing in emphysema. Clin. Sci., 13, 147–54.

    PubMed  CAS  Google Scholar 

  58. Otis, A.B., Mckerrow, C.B., Bartlett, R.A. et al. (1956) Mechanical factors in distribution of pulmonary ventilation. J. Appl. Physiol., 8, 427–43.

    PubMed  CAS  Google Scholar 

  59. Fleury, B., Murciano, D., Talamo, C. et al. (1985) Work of breathing in patients with chronic obstructive pulmonary disease in acute respiratory failure. Am. Rev. Respir. Dis., 131, 822–7.

    PubMed  CAS  Google Scholar 

  60. Freedman, S. (1970) Sustained maximum voluntary ventilation. Respir. Physiol., 8, 230–44.

    PubMed  CrossRef  CAS  Google Scholar 

  61. Dillard, T.A., Hnatiuk, O.W. and McCumber, T.R. (1993) Maximum voluntary ventilation. Spirometric determinants in chronic obstructive pulmonary disease patients and normal subjects. Am. Rev. Respir. Dis., 147, 870–5.

    PubMed  CrossRef  CAS  Google Scholar 

  62. Potter, W.A., Olafsson, S. and Hyatt, R.E. (1971) Ventilatory mechanics and expiratory flow limitation during exercise in patients with obstructive lung disease. J. Clin. Invest., 50, 910–9.

    PubMed  CrossRef  CAS  Google Scholar 

  63. Leaver, D.G. and Pride, N.B. (1971) Flow-volume curves and expiratory pressures during exercise in patients with chronic airways obstruction. Scand. J. Respir. Dis, 77 Suppl., 23–7.

    CAS  Google Scholar 

  64. Stubbing, D.G., Pengelly, L.D., Morse, J.L.C. and Jones, N.L. (1980) Pulmonary mechanics during exercise in subjects with chronic airflow obstruction. J. Appl. Physiol. Respirat. Environ. Exercise Physiol., 49, 511–5.

    CAS  Google Scholar 

  65. Gallagher, C.G. (1990) Exercise and chronic obstructive pulmonary disease. Med. Clin. North. Am., 74, 619–41.

    PubMed  CAS  Google Scholar 

  66. Grimby, G., Elgefors, B. and Oxhoj, H. (1973) Ventilatory levels and chest wall mechanics during exercise in obstructive lung disease. Scand. J. Respir. Dis., 54, 45–52.

    PubMed  CAS  Google Scholar 

  67. Levison, H. and Cherniack, R.M. (1968) Ventilatory cost of exercise in chronic obstructive pulmonary disease. J. Appl. Physiol., 25, 21–27.

    PubMed  CAS  Google Scholar 

  68. Haluszka, J., Chartrand, D.A., Grassino, A.E. et al. (1990) Intrinsic PEEP and arterial PCO2 in stable patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis., 141, 1194–7.

    PubMed  CrossRef  CAS  Google Scholar 

  69. Broseghini, C., Brandolese, R., Poggi, R. et al. (1988) Respiratory mechanics during the first day of mechanical ventilation in patients with pulmonary edema and chronic airway obstruction. Am. Rev. Respir. Dis., 138, 355–61.

    PubMed  CrossRef  CAS  Google Scholar 

  70. Guérin, C., Coussa, M-L., Eissa, N.T. et al. (1993) Lung and chest wall mechanics in mechanically ventilated COPD patients. J. Appl. Physiol., 74, 1570–80.

    PubMed  Google Scholar 

  71. Tantucci, C., Corbeil, C., Chassé, M. et al. (1991) Flow resistance in patients with chronic obstructive pulmonary disease in acute respiratory failure. Am. Rev. Respir. Dis., 144, 384–9.

    PubMed  CrossRef  CAS  Google Scholar 

  72. Mount, L.E. (1955). The ventilation flow-resistance and compliance of rat lungs. J. Physiol. (London), 127, 157–67.

    CAS  Google Scholar 

  73. D’Angelo, E., Robatto, F.M. and Calderini, E. et al. (1991) Pulmonary and chest wall mechanics in anaesthetized paralyzed humans. J. Appl. Physiol., 70, 2602–10.

    PubMed  Google Scholar 

  74. D’Angelo, E., Calderini, E., Torri, G. et al. (1989) Respiratory mechanics in anesthetized paralyzed humans: effect of flow, volume and time. J. Appl. Physiol., 67, 2556–64.

    PubMed  Google Scholar 

  75. Smith, T.C. and Marini, J.J. (1988) Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J. Appl. Physiol., 65, 1488–99.

    PubMed  CAS  Google Scholar 

  76. Rossi, A., Gottfried, S.B., Zocchi, L. et al. (1985) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation. Am. Rev. Respir. Dis., 131, 672–7.

    PubMed  CAS  Google Scholar 

  77. Pepe, P.E. and Marini, J.J. (1982) Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction. Am. Rev. Respir. Dis., 126, 166–70.

    PubMed  CAS  Google Scholar 

  78. Johanson, W.G. and Peters, J.I. (1988) Respiratory failure: pathophysiology and treatment, in Textbook of Respiratory Medicine (eds J.F. Murray and J.A. Nadel), Saunders, Philadelphia, pp. 2017–34.

    Google Scholar 

  79. Kimball, W.R., Leith, D.E. and Robbins, A.G. (1982) Dynamic hyperinflation and ventilator dependence in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis., 126, 991–5.

    PubMed  CAS  Google Scholar 

  80. Eissa, N.T. and Milic-Emili, J. (1991) Modern concepts in monitoring and management of respiratory failure. Anesthesiology Clin. North Am., 9, 199–218.

    Google Scholar 

  81. Poggi, R., Brandolese, R., Bernasconi, M. et al. (1989) Doxofylline and respiratory mechanics: short term effects in mechanically ventilated patients with airflow obstruction and respiratory failure. Chest, 96, 772–8.

    PubMed  CrossRef  CAS  Google Scholar 

  82. Petrof, B.J., Kimoff, R.J., Cheong, T.H. et al. (1989) Nasal continuous positive airway pressure reduces inspiratory muscle effort during sleep in severe chronic obstructive pulmonary disease (abstract). Am. Rev. Respir. Dis., 139, A496.

    Google Scholar 

  83. Gottfried, S.B. (1991) The role of PEEP in the mechanically ventilated COPD patient, in Ventilatory Failure (eds J.J. Marini and C. Roussos), Springer-Verlag, Berlin, pp. 392–418.

    CrossRef  Google Scholar 

  84. Gottfried, S.B., Rossi, A., Higgs, B.D. et al. (1985) Noninvasive determination of respiratory system mechanics during mechanical ventilation for acute respiratory failure. Am. Rev. Respir. Dis., 131, 414–20.

    PubMed  CAS  Google Scholar 

  85. Valta, P., Corbeil, C., Campodonico, R. et al. (1994) Detection of expiratory flow limitation during mechanical ventilation. Am. J. Respir. Crit. Care Med., in press.

    Google Scholar 

  86. Koulouris, N., Valta, P., Lavoie, A. et al. (1993) A simple method to detect expiratory flow limitation during spontaneous breathing. Am. Rev. Respir. Dis., 147, A781.

    Google Scholar 

  87. Knudson, R.J., Mead, J. and Knudson, D.E. (1974) Contribution of airway collapse to supramaximal expiratory flows. J. Appl. Physiol., 36, 653–67.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pride, N.B., Milic-Emili, J. (1995). Lung Mechanics. In: Calverley, P.M.A., Pride, N.B. (eds) Chronic Obstructive Pulmonary Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-4525-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-4525-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-46450-8

  • Online ISBN: 978-1-4899-4525-9

  • eBook Packages: Springer Book Archive