Skip to main content

Lung Structure-Function Relationships

  • Chapter
  • 163 Accesses

Abstract

The characteristic physiologic abnormality that defines chronic obstructive pulmonary disease (COPD) is a decrease in the maximal expiratory flow. Mead and his associates [1] developed the concept that during forced expiration lateral pressures at points within the airways become equal to pleural pressure and that the pressure driving flow from the alveoli to these equal pressure points approximates the static recoil pressure of the lung. This means that forced expiratory flow can be reduced by (1) a loss of lung elasticity, (2) an increase in resistance of the airways upstream from the equal pressure points, and/or (3) an increase in the compliance of airways downstream from equal pressure points. Over the past 15 years we have collected data on lung function and structure on more than 400 patients who have had a surgical resection of a lung or lobe. Despite a remarkably uniform smoking duration and intensity and a narrow age distribution these patients show a wide variation in the degree of airway obstruction. The purpose of this chapter is to examine the factors that determine maximal expiratory flow in an attempt to define the relative importance of loss of lung elastic recoil and peripheral airways obstruction to the reduction in forced expiratory flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mead, J., Turner, J.M., Macklem, P.T. and Little, J.B. (1967) Significance of the relationship between lung recoil and maximum expiratory flow. J. Appl. Physiol., 22, 95–108.

    PubMed  CAS  Google Scholar 

  2. Colebatch, H.J.H., Ng, C.K.Y. and Nikov, N. (1979) Use of an exponential function for elastic recoil. J. Appl. Physiol., 46, 387–93.

    PubMed  CAS  Google Scholar 

  3. Wright, J. L., Wiggs, B., Paré, P.D. and Hogg, J.C. (1986) Ranking the severity of emphysema on whole lung slices. Am. Rev. Respir. Dis., 133, 930–1.

    PubMed  CAS  Google Scholar 

  4. Thurlbeck, W.M., Dunnill, M.S., Hartung, W. et al. (1970) A comparison of three methods of measuring emphysema. Hum. Pathol., 1, 215–26.

    Article  PubMed  CAS  Google Scholar 

  5. Bergen, C., Müller, M., Nicholls, D.M. et al. (1986) The diagnosis of emphysema. Am. Rev. Respir. Dis., 133, 541–6.

    Google Scholar 

  6. Osborne, S., Hogg, J.C., Wright, J.L. et al. (1988). Exponential analysis of the pressure volume curve. Am. Rev. Respir. Dis., 137, 1083–8.

    Article  PubMed  CAS  Google Scholar 

  7. Hogg, J.C., Nepszy, S., Macklem, P.T. and Thurlbeck, W.M. (1969) The elastic properties of the centrilobular emphysematous space. J. Clin. Invest., 48, 1306–12.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, W.D., Eidelman, D.H., Izquierdo, J.L. et al. (1991) Centrilobular and panlobular emphysema in smokers. Am. Rev. Respir. Dis., 144, 1385–90.

    Article  PubMed  CAS  Google Scholar 

  9. Rohrer, F. (1915) Der Stromungswiderstand in den menschlichen Atemwegen und der Eimflub der unregelmassgen Verzweigung des bronchialsystems auf den Atmungsverlauf in vershiedenen Lungenbezirken. Arch. Ges. Physiol., 162, 225–9.

    Article  Google Scholar 

  10. Macklem, P.T. and Mead, J. (1967). Resistance of central and peripheral airways measured by a retrograde catheter. J. Appl. Physiol, 22, 395–401.

    PubMed  CAS  Google Scholar 

  11. Hogg, J.C., Macklem, P.T. and Thurlbeck, W.M. (1968). Site and nature of airways obstruction in chronic obstructive lung disease. N. Engl. J. Med., 278, 1355–60.

    Article  PubMed  CAS  Google Scholar 

  12. Van Brabandt, H., Cauberghs, M., Verbeken, E. et al. (1983). Partitioning of pulmonary impedence in excised human and canine lungs. J. Appl. Physiol., 55, 1733–42.

    PubMed  Google Scholar 

  13. Yanai, M., Sekizawa, K., Ohru, P. et al. (1992) Site of airway obstruction in pulmonary disease: direct measure of intrabronchial pressure. J. Appl Physiol., 72, 1016–23.

    PubMed  CAS  Google Scholar 

  14. Verbeken, E.K., Cauberghs, M., Mertens, I. et al. (1992) Tissue and airway impedence of excised normal senile, and emphysematous lungs. J. Appl Physiol., 72, 2343–53.

    PubMed  CAS  Google Scholar 

  15. Mead, J. (1970) The lung’s ‘quiet zone’. N. Engl. J. Med., 282, 1318–19.

    Article  PubMed  CAS  Google Scholar 

  16. Macklem, P.T. and Permutt, S. (eds) (1979) The lung in the transition between health and disease In: Lung Biology in Health and Disease, (Executive Editor Claude Lenfant) Marcel Dekker.

    Google Scholar 

  17. Macklem, P.T., Proctor, D.F. and Hogg, J.C. (1970). The stability of peripheral airways, Resp. Physiol., 8, 191–203.

    Article  CAS  Google Scholar 

  18. Cosio, M., Ghezzo, H. and Hogg, J.C. et al. (1977) The relationship between structural changes in small airways and pulmonary function tests. N. Engl J. Med., 298, 1277–81.

    Article  Google Scholar 

  19. Berend, N., Wright, J.L., Thurlbeck, W.M. et al. (1981). Small airways disease: reproducibility of measurements and correlation with lung function. Chest, 79, 263–8.

    Article  PubMed  CAS  Google Scholar 

  20. Petty, T.L., Silvers, G.W., Stanford, R.E. et al. (1980). Small airway pathology as related to increased closing capacity and abnormal slope of Phase 3 in excised human lungs. Am. Rev. Respir. Dis, 121, 449–56.

    PubMed  CAS  Google Scholar 

  21. Bosken, C.H., Wiggs, B.R., Paré, P.D. and Hogg, J.C. (1990) Small airway dimensions in smokers with obstruction to airflow. Am. Rev. Respir. Dis., 142, 563–70.

    Article  PubMed  CAS  Google Scholar 

  22. Riess, A., Wiggs, B., Wright, J.L. et al. Morphologic determinants of airway responsiveness in chronic smokers. Am. Rev. Respir. Dis. Submitted.

    Google Scholar 

  23. Morris, J.R., Koski, A. and Johnson, L.C. (1971) Spirometric standards for healthy non-smoking adults. Am. Rev. Respir. Dis., 133, 132–5.

    Google Scholar 

  24. Colebatch, H.J.H., Greaves, I.A. and Ng, C.K.Y. (1979). Exponential analysis of elastic recoil and aging in healthy males and females. J. Appl Physiol., 47, 683–91.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paré, P.D., Hogg, J.C. (1995). Lung Structure-Function Relationships. In: Calverley, P.M.A., Pride, N.B. (eds) Chronic Obstructive Pulmonary Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-4525-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-4525-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-46450-8

  • Online ISBN: 978-1-4899-4525-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics