G

  • A. F. Kharshiladze
  • D. V. Alekseevskiĭ
  • N. N. Vorob’ev
  • V. A. Trenogin
  • A. Z. Petrov
  • D. D. Sokolov
  • E. A. Nisnevich
  • A. I. Skopin
  • S. P. Demushkin
  • V. P. Platonov
  • O. A. Ivanova
  • L. A. Skornyakov
  • I. V. Dolgachev
  • M. M. Postnikov
  • K. I. Beĭdar
  • A. V. Mikhalev
  • B. A. Sevast’yanov
  • E. B. Yanovskaya
  • V. K. Domanskiĭ
  • A. N. Lyapunov
  • A. S. Mikhaĭlova
  • F. I. Ereshko
  • I. A. Vatel’
  • O. V. Sarmanov
  • A. V. Prokhorov
  • Yu. V. Prokhorov
  • L. P. Kuptsov
  • A. A. Dezin
  • Yu. I. Shokin
  • N. N. Yanenko
  • L. N. Sretenskiĭ
  • V. M. Tikhomirov
  • V. D. Kukin
  • Yu. D. Burago
  • D. P. Zhelobenko
  • M. K. Samarin
  • S. N. Chernikov
  • B. M. Bredikhin
  • V. V. Rumyantsev
  • N. S. Bakhvalov
  • V. P. Motornyĭ
  • S. A. Stepanov
  • L. N. Shevrin
  • A. P. Prudnikov
  • E. D. Solomentsev
  • R. L. Dobrushin
  • V. V. Prelov
  • E. V. Shikin
  • D. V. Anosov
  • E. A. Gorin
  • L. N. Bol’shev
  • N. Kh. Rozov
  • V. E. Plisko
  • A. V. Arkhangel’skiĭ
  • V. A. Iskovskikh
  • B. M. Levitan
  • A. V. Bitsadze
  • Yu. B. Rudyak
  • S. M. Nikol’skiĭ
  • G. L. Litvinov
  • V. S. Vladimirov
  • A. L. Shmel’kin
  • V. I. Ponomarev
  • P. K. Suetin
  • S. G. Kreĭn
  • V. I. Danilov
  • M. I. Voĭtsekhovskiĭ
  • A. Wörz-Busekros
  • G. E. Mints
  • Vik. S. Kulikov
  • A. S. Rapinchuk
  • V. I. Dmitriev
  • V. A. Zalgaller
  • Yu. A. Volkov
  • Yu. S. Slobodyan
  • V. F. Eremeev
  • M. I. Yurkina
  • V. M. Babich
  • E. G. Sklyarenko
  • P. S. Modenov
  • A. S. Parkhomenko
  • V. M. Kalinin
  • N. M. Ostianu
  • E. G. Poznyak
  • A. D. Aleksandrov
  • V. A. Toponogov
  • S. Z. Shefel’
  • A. V. Malyshev
  • E. M. Chirka
  • I. A. Kvasnikov
  • P. L. Ul’yanov
  • K. P. Latyshev
  • I. A. Shishmarev
  • V. L. Popov
  • G. V. Kuz’mina
  • E. N. Kuz’min
  • A. S. Fedenko
  • E. G. Goluzina
  • V. N. Grishin
  • A. A. Karatsuba
  • A. G. Dragalin
  • M. S. Nikulin
  • V. T. Bazylev
  • A. M. Nakhushev
  • A. K. Mitropol’skiĭ
  • A. V. Gladkiĭ
  • V. P. Kozyrev
  • V. B. Alekseev
  • A. A. Sapozhenko
  • A. A. Konyushkov
  • N. M. Nagornyĭ
  • A. L. Onishchik
  • N. V. Mitskevich
  • A. A. Bukhshtab
  • V. N. Nechaev
  • A. K. Gushchin
  • Sh. A. Alimov
  • V. A. Il’in
  • V. N. Plechko
  • L. D. Kudryavtsev
  • M. Sh. Tsalenko
  • I. A. Aleksandrov
  • P. M. Tamrazov
  • M. I. Kargapolov
  • Yu. I. Merzlyakov
  • A. A. Bovdi
  • A. I. Shtern
  • E. B. Vinberg
  • I. P. Egorov
  • V. M. Kopytov
  • V. D. Belousov
  • A. F. Leont’ev
Part of the Encyclopaedia of Mathematics book series (ENMA, volume 2)

Keywords

Covariance Tate Lithosphere Nash Bedding 

References

  1. [1]
    Husemoller, D.: Fibre bundles, McGraw-Hill, 1966.Google Scholar
  2. [2]
    Steenrod, N.E.: The topology of fibre bundles, Princeton Univ. Press, 1951.Google Scholar
  3. [1]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 1, Wiley, 1963.Google Scholar
  4. [2]
    Sternberg, S.: Lectures on differential geometry, Prentice-Hall, 1964.Google Scholar
  5. [3]
    Berger, M.: ‘Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes’, Bull. Soc. Math. France 83 (1955), 279–330.MathSciNetMATHGoogle Scholar
  6. [4]
    Chern, S.S,: ‘The geometry of G-structures’, Bull. Amer. Math. Soc. 72 (1966), 167–219.MathSciNetMATHGoogle Scholar
  7. [5]
    Kobayashi, S.: Transformation groups in differential geometry, Springer, 1972.Google Scholar
  8. [6]
    Molino, P.: Théorie des G-structures: le problème d’équivalence, Springer, 1977.Google Scholar
  9. [7]
    Morimoto, T.: ‘Sur le problème d’équivalence des structures géométriques’, C.R. Acad. Sci. Paris 292, no. 1 (1981), 63–66. English summary.MathSciNetMATHGoogle Scholar
  10. [8]
    Singer, I.M. and Sternberg, S.: ‘The infinite groups of Lie and Cartan. I. The transitive groups’, J. d’Anal. Math. 15 (1965), 1–114.MathSciNetMATHGoogle Scholar
  11. [9]
    Pollack, A.S.: ‘The integrability problem for pseudogroup structures’, J. Diff Geom. 9, no. 3 (1974), 355–390.MathSciNetMATHGoogle Scholar
  12. [1]
    Galerkin, B.G.: ‘On electrical circuits for the approximate solution of the Laplace equation’, Vestnik Inzk 19 (1915), 897–908 (in Russian).Google Scholar
  13. [2]
    Michlin, S.G. [S.G. Mikhlin]: Variationsmethoden der mathematischen Physik, Akademie-Verlag, 1962 (translated from the Russian).Google Scholar
  14. [3]
    Vaĭnberg, M.M.: Variational methods and methods of nonlinear operators in the theory of nonlinear equations, Wiley, 1973 (translated from the Russian).Google Scholar
  15. [A1]
    Marchuk, G.I.: Methods of numerical mathematics, Springer, 1982 (translated from the Russian).Google Scholar
  16. [A2]
    Mitchel, A.R. and Watt, R.: The finite element method in partial differential equations, Wiley, 1977.Google Scholar
  17. [A3]
    Stoer, J. and Bulirsch, R.: Einführung in die numerische Mathematik, II, Springer, 1973.Google Scholar
  18. [A4]
    Fletcher, C.A.J.: Computational Galerkin methods, Springer, 1984.Google Scholar
  19. [1]
    Fock, V.A. [V.A. Fok]: The theory of space, time and gravitation, Macmillan, 1964 (translated from the Russian).Google Scholar
  20. [A1]
    Arnol’d, V.I.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).Google Scholar
  21. [1]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  22. [2]
    Penrose, R. and Wheeler, J.A.:’ structure of space-time’, in C.M. DeWitt (ed.): Batelle Rencontres 1967 Lectures in Math. Physics, Benjamin, 1968.Google Scholar
  23. [1]
    Savelov, A.A.: Plane curves, Moscow, 1960 (in Russian).Google Scholar
  24. [A1]
    Arnol’d, V.I.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).Google Scholar
  25. [1]
    Serre, J.-P.: Cohomologie Galoisienne, Springer, 1964.Google Scholar
  26. [2]
    Serre, J.-P.: Groupes algébrique et corps des classes, Hermann, 1959.Google Scholar
  27. [3]
    Cassels, J.W.S. and Fröhlich, A. (eds.): Algebraic number theory, Acad. Press, 1986.Google Scholar
  28. [4]
    Koch, H.: Galoissche Theorie der p-Erweiterungen, Deutsch. Verlag Wissenschaft., 1970.Google Scholar
  29. [5]
    Artin, E. and Tate, J.: Class field theory, Benjamin, 1967.Google Scholar
  30. [6]
    Serre, J.-P.: Local fields, Springer, 1979 (translated from the French).Google Scholar
  31. [7]
    Borel, A. and Serre, J.-P.: ‘Théorèmes de finitude en cohomologie Galoisienne’, Comment Math. Heb. 39 (1964), 111–164.MathSciNetMATHGoogle Scholar
  32. [8]
    ‘Theorie des topos et cohomologie étale des schemas’, in A. Grothendieck, J.-L. Verdier and M. Artin (eds.): Sem. Geom. Alg. 4, Vol. 1–3, Springer, 1972.Google Scholar
  33. [9]
    Bruhat, F. and Tits, J.: ‘Groupes réductifs sur un corps local I. Données radicielles valuées’, Publ. Math. IHES, no. 41 (1972), 5–252.MathSciNetMATHGoogle Scholar
  34. [10]
    Borel, A.: ‘Some finiteness properties of adèle groups over number fields’, Publ. Math. IHES, no. 16 (1963), 5–30.MathSciNetGoogle Scholar
  35. [11]
    Steinberg, R.: ‘Regular elements of semisimple algebraic groups’, Publ. Math. IHES, no. 25 (1965), 49–80.Google Scholar
  36. [12A]
    Kneser, M.: ‘Galois-Kohomologie halbeinfacher algebraischer Gruppen über ρ-adische Körpern I’, Math. Z 88 (1965), 40–47.MathSciNetMATHGoogle Scholar
  37. [12B]
    Kneser, M.: ‘Galois-Kohomologie halbeinfacher algebraischer Gruppen über ρ-adische Körpern II’, Math. Z. 89 (1965), 250–272.MathSciNetGoogle Scholar
  38. [13A]
    Harder, G.: ‘Über die Galoiskohomologie halbeinfacher Matrizengruppen I’, Math. Z. 90 (1965), 404–428.MathSciNetMATHGoogle Scholar
  39. [13B]
    Harder, G.: ‘Über die Galoiskohomologie halbeinfacher Matrizengruppen II’, Math. Z. 92 (1966), 396–415.MathSciNetMATHGoogle Scholar
  40. [A1]
    Manin, Yu.I.: Cubic forms, North-Holland, 1974 (translated from the Russian).Google Scholar
  41. [A2]
    Colliot-Thélène, J.-L. and Sansuc, J.J.: ‘La descente sur les variétés rationnelles II’, Duke Math. J. 54 (1987), 375–492.MathSciNetMATHGoogle Scholar
  42. [A3]
    Voskresenskiĭ, V.E.: Algebraic tori, Moscow, 1977 (in Russian).Google Scholar
  43. [A4]
    Chernusov, V.l.: ‘On the Hasse principle for groups of type E 8’, (To appear) (in Russian).Google Scholar
  44. [A5]
    Bruhat, F. and Tits, J.: ‘Groupes réductifs sur un corps local III. Complements et applications à la cohomologie Galoisiènne’, J. Fac. Sci. Univ. Tokyo 34 (1987), 671–698.MathSciNetMATHGoogle Scholar
  45. [A6]
    Harder, G.: ‘Chevalley groups over function fields and auto-morphic forms’, Ann. of Math. 100 (1974), 249–306.MathSciNetMATHGoogle Scholar
  46. [A7]
    Albert, A.: Structure of algebras, Amer. Math. Soc., 1939, p. 143.Google Scholar
  47. [A8]
    Brauer, R., Hasse, H. and Noether, E.: ‘Beweis eines Haupsatzes in der Theorie der Algebren’, J. Reine Angew. Math. 107 (1931), 399–404.Google Scholar
  48. [1]
    Cohn, P.M.: Universal algebra, Reidel, 1981.Google Scholar
  49. [2]
    Kurosh, A.G.: Lectures on general algebra, Chelsea, 1963 (translated from the Russian).Google Scholar
  50. [1]
    Galois, E.: Écrits et mémoires d’E. Galois, Gauthier-Villars, 1962.Google Scholar
  51. [2]
    Waerden, B.L. van der: Algebra, 1–2, Springer, 1967–1971 (translated from the German).Google Scholar
  52. [3]
    Tschebotaröw, N.G. [N.G. Chebotarev]: Grundzüge der Galois’schen Theorie, Noordhoff, 1950 (translated from the Russian).Google Scholar
  53. [4]
    Bourbaki, N.: Algebra, Springer, 1989, Chapt. 1–3 (translated from the French)Google Scholar
  54. [1]
    Bourbaki, N.: Algebra, Springer, 1989, Chapt. 1–3 (translated from the French).Google Scholar
  55. [2]
    Lang, S.: Algebra, Addison-Wesley, 1984.Google Scholar
  56. [3]
    Postnikov, M.M.: Galois theory, Moscow, 1962 (in Russian).Google Scholar
  57. [4]
    Jacobson, N.: The theory of rings, Amer. Math. Soc., 1943.Google Scholar
  58. [1]
    Galois, E.: Écrits et mémoires d’E. Galois, Gauthier-Villars, 1962.Google Scholar
  59. [2]
    Tschebotaröw, N.G. [N.G. Chebotarev]: Grundzüge der Galois’sehen Theorie, Noordhoff, 1950 (translated from the Russian).Google Scholar
  60. [3]
    Chebotarev, N.G.: Galois theory, Moscow-Leningrad, 1936 (in Russian).Google Scholar
  61. [4]
    Postnikov, M.M.: Fundamentals of Galois theory, Noordhoff, 1962 (translated from the Russian).Google Scholar
  62. [5]
    Postnikov, M.M.: Galois theory, Moscow, 1963 (in Russian).Google Scholar
  63. [6]
    Waerden, B.L. van der: Algebra, 1–2, Springer, 1967–1971 (translated from the German).Google Scholar
  64. [7]
    Lang, S.: Algebra, Addison-Wesley, 1974.Google Scholar
  65. [8]
    Bourbaki, N.: Elements of mathematics. Algebra: Modules. Rings. Forms, 2, Addison-Wesley, 1975, Chapt. 4; 5; 6 (translated from the French).Google Scholar
  66. [9]
    Koch, H.: Galoische Theorie der p-Erweiterungen, Deutsch. Verlag Wissenschaft., 1970.Google Scholar
  67. [10]
    Artin, E.: Galois theory, Notre Dame Univ., Indiana, 1948.Google Scholar
  68. [1]
    Tschebotaröw, N.G. [N.G. Chebotarev]: Grundzüge der Galois’sehen Theorie, Noordhoff, 1950 (translated from the Russian).Google Scholar
  69. [2A]
    Shafarevich, I.R.: ‘On the construction of a field with a given Galois group of order 1α’, Izv. Akad. Nauk SSSR 18, no. 2 (1954), 261–296 (in Russian).MATHGoogle Scholar
  70. [2B]
    Shafarevich, I.R.: ‘The construction of an algebraic number field with a given solvable Galois group’, Izv. Akad Nauk SSSR 18, no. 3 (1954), 525–578 (in Russian).MATHGoogle Scholar
  71. [A1]
    Belyĭ, G.V.: ‘On extensions of the maximal cyclotomic field having a given classical Galois group’, J. Reine Angew. Math. 341 (1983), 147–156.MathSciNetMATHGoogle Scholar
  72. [A2]
    Matzat, B.H.: Konstruktive Galoistheorie, Lecture notes in math., 1284, Springer, 1987.Google Scholar
  73. [A3]
    J.P. Serre: ‘Groupes de Galois sur Q’, Sem. Bourbaki Exp. 689 (1987).Google Scholar
  74. [1]
    Jacobson, N.: Structure of rings, Amer. Math. Soc., 1956.Google Scholar
  75. [2]
    Chase, S.U. and Swedler, ME.: Hopf algebras and Galois theory, Springer, 1969.Google Scholar
  76. [3]
    Meyer, F. de and Ingraham, E.: Separable algebras over commutative rings, Springer, 1971.Google Scholar
  77. [4]
    Magid, A.R.: The separable Galois theory of commutative rings, M. Dekker, 1974.Google Scholar
  78. [A1]
    Chase, S.U., Harrison, D.K. and Rosenberg, A.: Galois theory and Galois cohomology of commutative rings, Amer Math. Soc., 1965.Google Scholar
  79. [A1]
    Arthreya, K.B. and Ney, P.E.: Branching processes, Springer, 1972.Google Scholar
  80. [A2]
    Harris, Th.E.: The theory of branching processes, Springer, 1963.Google Scholar
  81. [1]
    Karlin, S.: Mathematical methods and theory in games, programming and economics, Addison-Wesley, 1959.Google Scholar
  82. [1]
    Dubins, L.E. and Savage, L.J.: How to gamble if you must: inequalities for stochastic processes, McGraw-Hill, 1965.ai][1]_Milnor, J. and Shapley, L.S.: ‘On games of survival’, in Contributions to the theory of games, Vol. 3, Princeton Univ. Press, 1957, pp. 15-45.Google Scholar
  83. [2]
    Blackwell, D.: ‘On multi-component attrition games’, Naval Res. Logist. Quart. 1 (1954), 210–216.MathSciNetGoogle Scholar
  84. [3]
    Romanovskiĭ, I.V.: ‘Game-type random walks’, Theor. Probabl. Appl 6 (1961), 393–396. (Teor. Veroyatnost. i Primenen. 6, no. 4 (1961), 426-429).Google Scholar
  85. [A1]
    Luce, R.D. and Raiffa, H.: Games and decisions, Wiley, 1957.Google Scholar
  86. [1]
    Berge, G: Théorie générale des jeux à n personnes, Gauthier-Villars, 1957.Google Scholar
  87. [2]
    Kummer, B.: Spiele auf Graphen, Birkhaüser, 1980.Google Scholar
  88. [A1]
    Berge, C.: Graphs and hypergraphs, North-Holland, 1977 (translated from the French).Google Scholar
  89. [A2]
    Conway, J.H.: On numbers and games, Acad. Press, 1976.Google Scholar
  90. [A3]
    Berlekamp, E.R., Conway, J.H. and Guy, R.K.: Winning ways for your mathematical plays, 1–2, Acad. Press, 1982.Google Scholar
  91. [1]
    Karlin, S.: Mathematical methods and theory in games, programming and economics, Addison-Wesley, 1959.Google Scholar
  92. [A1]
    Luce, R.D. and Raiffa, H.: Games and decisions, Wiley, 1957.Google Scholar
  93. [1]
    Germeĭer, Yu.B.: Games with non-conflicting interests, Moscow, 1972 (in Russian).Google Scholar
  94. [A1]
    Basar, T. and Olsder, G.J.: Dynamic noncooperative game theory, Acad. Press, 1982.Google Scholar
  95. [A2]
    Luk, P.B., Ho, Y.C. and Olsder, G.J.: ‘A control-theoretical view on incentives’, Automatica 18 (1982), 167–179.Google Scholar
  96. [1]
    Neumann, J. von and Morgenstern, O.: Theory of games and economic behavior, Princeton Univ. Press, 1947.Google Scholar
  97. [2]
    Luce, R.D. and Raiffa, H.: Games and decisions, Wiley, 1957.Google Scholar
  98. [3]
    Karlin, S.: Mathematical methods and theory in games, programming and economics, Addison-Wesley, 1959.Google Scholar
  99. [4]
    Parthasarathy, T. and Raghavan, T.E.S.: Some topics in two-person games, Amer. Elsevier, 1971.Google Scholar
  100. [5]
    Vorob’ev, N.N.: Entwicklung der Spieltheorie, Deutsch. Verlag Wissenschaft., 1975.Google Scholar
  101. [6]
    The theory of games. Annotated index of publications up to 1968, Leningrad, 1976 (in Russian).Google Scholar
  102. [7]
    Vorob’ev, N.N.: Game theory, Springer, 1977 (translated from the Russian).Google Scholar
  103. [8]
    Aubin, J.P.: Mathematical methods of game and economic theory, North-Holland, 1979 (translated from the French).Google Scholar
  104. [9]
    The theory of games. Annotated index of publications 1969–1974, Leningrad, 1980 (in Russian).Google Scholar
  105. [10]
    Rosenmüller, J.: The theory of games and markets, North-Holland, 1981.Google Scholar
  106. [11]
    Owen, G.: Game theory, Acad. Press, 1982.Google Scholar
  107. [12]
    Shubik, M.: Game theory in the social sciences, M.I.T., 1982.Google Scholar
  108. [13]
    Shubik, M.: A game-theoretic approach to political economy, M.I.T., 1984.Google Scholar
  109. [14]
    Vorob’ev, N.N.: Foundations of game theory, Leningrad, 1984 (in Russian).Google Scholar
  110. [A1]
    Isaacs, R.: Differential games, Wiley, 1965.Google Scholar
  111. [A2]
    Basar, T. and Olsder, G.J.: Dynamic noncooperative game theory, Acad. Press, 1982.Google Scholar
  112. [A3]
    Krasovskiĭ, N. and Subbotin, A.I.: Game theoretical control problems, Springer, 1988 (translated from the Russian).Google Scholar
  113. [A4]
    Shubik, M. (ed.): The mathematics of conflict, North-Holland, 1983.Google Scholar
  114. [A5]
    Driessen, T.: Cooperative games, solutions and applications, Kluwer, 1988.Google Scholar
  115. [A6]
    Damme, E. van: Stability and perfection of Nash equilibria, Springer, 1987.Google Scholar
  116. [A7]
    Lemke, C.E. and Howson, J.T., jr.: ‘Equilibrium points of bimatrix games’, SIAM J. Appl. Math. 12 (1964), 413–423.MathSciNetMATHGoogle Scholar
  117. [A8]
    Scarf, H.E.: The computation of economic equilibria, Yale Univ. Press, 1973.Google Scholar
  118. [A9]
    Szép, J. and Forgö, F.: Introduction to the theory of games, Reidel, 1985.Google Scholar
  119. [1]
    Sarmanov, I.O.: Trudy Gidrologichesk. Inst. 162 (1969), 37–61.Google Scholar
  120. [2]
    Myller-Lebedeff, W.: ‘Die Theorie der Integralgleichungen in Anwendung auf einige Reihenentwicklungen’, Math. Ann. 64 (1907), 388–416.MathSciNetMATHGoogle Scholar
  121. [A1]
    Johnson N.L. and Kotz, S.: Distributions in statistics, 2. Continuous multivariate distributions, Wiley, 1972.Google Scholar
  122. [1]
    Pagurova, V.I.: Tables of the incomplete gamma-function, Moscow, 1963 (in Russian).Google Scholar
  123. [2]
    Pearson, K. (ed.): Tables of the incomplete gamma function, Cambridge Univ. Press, 1957.Google Scholar
  124. [A1]
    Johnson, N.L. and Kotz, S.: Distributions in statistics, 1. Continuous univariate distributions, Wiley, 1970.Google Scholar
  125. [A2]
    Comrie, L.J.: Chambers’s six-figure mathematical tables, II, Chambers, 1949.Google Scholar
  126. [1]
    Whittaker, E.T. and Watson, G.N.: A course of modern analysis, Cambridge Univ. Press, 1952.Google Scholar
  127. [2]
    Bateman, H. and Erdélyi, A.: Higher transcendental functions. The Gamma function. The hypergeometric function. Legendre functions, 1, McGraw-Hill, 1953.Google Scholar
  128. [3]
    Bourbaki, N.: Elements of mathematics. Functions of a real variable, Addison-Wesley, 1976 (translated from the French).Google Scholar
  129. [4]
    Handbook of mathematical libraries: Math. anal., functions, limits, series, continued fractions, Moscow, 1961 (in Russian).Google Scholar
  130. [5]
    Nielsen, N.: Handbuch der Theorie der Gammafunktion, Chelsea, reprint, 1965.Google Scholar
  131. [6]
    Sonin, N.Ya.: Studies on cylinder functions and special polynomials, Moscow, 1954 (in Russian).Google Scholar
  132. [7]
    Voronoĭ, G.F.: Collected works, Vol. 2, Kiev, 1952, pp. 239–368 (in Russian).Google Scholar
  133. [8]
    Jahnke, E. and Emde, F.: Tables of functions with formulae and curves, Dover, reprint, 1945 (translated from the German).Google Scholar
  134. [9]
    Angot, A.: Compléments de mathématiques. A l’usage des ingénieurs de l’electrotechnique et des télécommunications, C.N.E.T., 1957.Google Scholar
  135. [A1]
    Artin, E.: The gamma function, Holt, Rinehart & Winston, 1964.Google Scholar
  136. [A2]
    Askey, R.: ‘The q-Gamma and q-Beta functions’, Appl. Anal. 8 (1978), 125–141.MathSciNetMATHGoogle Scholar
  137. [1]
    Gårding, L.: ‘Dirichlet’s problem for linear elliptic partial differential equations’, Math. Scand. 1 (1953), 55–72.MathSciNetMATHGoogle Scholar
  138. [2]
    Yosida, K.: Functional analysis, Springer, 1980.Google Scholar
  139. [A1]
    Hörmander, L.: The analysis of linear partial differential operators, 3, Springer, 1985.Google Scholar
  140. [1]
    Serrin, J.: ‘Mathematical principles of classical fluid mechanics’ in S. Flügge (ed.): Handbuch der Physik, Vol. 8/1, Springer, 1959, pp. 125–263.Google Scholar
  141. [2]
    Sedov, L.I.: A course in continuum mechanics, 1–4, Wolters-Noordhoff, 1971–1972 (translated from the Russian).Google Scholar
  142. [3]
    Landau, L.D. and Lifshits, E.M.: Mechanics, Pergamon, 1965 (translated from the Russian).Google Scholar
  143. [4]
    Kochin, N.E., Kibel’, I.A. and Roze, N.V.: Theoretical hydrodynamics, Interscience, 1964 (translated from the Russian).Google Scholar
  144. [5]
    Branover, G.G. and Tsinober, A.M.: Magnetic hydrodynamics of incompressible media, Moscow, 1970 (in Russian).Google Scholar
  145. [6]
    Rozhdestvenskiĭ, B.L. and Yanenko, N.N.: Systems of quasilinear equations and their applications to gas dynamics, Amer. Math. Soc., 1983 (translated from the Russian).Google Scholar
  146. [A1]
    Courant, R. and Friedrichs, K.O.: Supersonic flow and shock waves, Interscience, 1948.Google Scholar
  147. [A2]
    Liepmann, H.W. and Roshko, A.: Elements of gas dynamics, Wiley, 1957.Google Scholar
  148. [A3]
    Sears, W.R. (ed.): General theory of high speed aerodynamics, Princeton Univ. Press, 1954.Google Scholar
  149. [A4]
    Cercignani, G: The Boltzmann equation and its applications, Springer, 1988.Google Scholar
  150. [1]
    Richtnyer, R.D. and Morton, K.: Difference methods for initial-value problems, Wiley (Interscience), 1967.Google Scholar
  151. [2]
    Godunov, S.K. and Ryaben’kiĭ, V.S.: Theory of difference schemes, North-Holland, 1964 (translated from the Russian).Google Scholar
  152. [3]
    Rozhdestvenskiĭ, B.L. and Yanenko, N.N.: Systems of quasilinear equations and their applications to gas dynamics, Amer. Math. Soc., 1983 (translated from the Russian).Google Scholar
  153. [4]
    Samarskiĭ, A.A.: Theorie der Differenzverfahren, Akad. Verlagsgesell. Geest u. Portig K.-D., 1984 (translated from the Russian).Google Scholar
  154. [5]
    Zhukov, A.I.: ‘Application of the method of characteristics to the numerical solution of one-dimensional problems of gas dynamics’, Trudy Mat. Inst. Steklov. 58 (1960) (in Russian).Google Scholar
  155. [6]
    Harlow, F.: Numerical methods in hydrodynamics, Moscow, 1967, pp. 316-342 (in Russian; translated from the English).Google Scholar
  156. [7]
    Dorodnitsyn, A.A.: ‘On a method for the numerical solution of certain nonlinear problems in aerodynamics’, in Proc. 3-th All-Union Math. Congress, Vol. 3, Moscow, 1958, pp. 447–453 (in Russian).Google Scholar
  157. [8]
    Belotserkovskiĭ, O.M.: ‘Numerical methods for solving the stationary equations of gas dynamics’, in Numerical methods for solving problems in the mechanics of continuous media, Moscow, 1969, pp. 101-213 (in Russian).Google Scholar
  158. [9]
    Yanenko, N.N., Anuchina, N.N., Petrenko, V.E. and Shokin, Yu.I.: ‘Methods for the calculations of problems in gas dynamics involving large derivations’, Chisl. Mat. Mekh. Sploshn. Sred. 1 (1970), 40–62 (in Russian).Google Scholar
  159. [10]
    Yanenko, N.N.: The method of fractional steps; the solution of problems of mathematical physics in several variables, Springer, 1971 (translated from the Russian).Google Scholar
  160. [11]
    Samarskiĭ, A.A. and Popov, Yu.P.: Difference schemes of gas dynamics, Moscow, 1975 (in Russian).Google Scholar
  161. [12]
    Godunov, S.K., Zabrodin, A.V. and Prokopov, G.P.: ‘A computational scheme for two-dimensional non-stationary problems of gas dynamics and calculation of the flow from a shock wave approaching a stationary state’, USSR Comput. Math. Math. Phys. 1, no. 6 (1961), 1187–1219. (Zh. Vychisl. Mat. i Mat. Fiz. 1, no. 6 (1961), 1020-1050).MathSciNetMATHGoogle Scholar
  162. [A1]
    Baker, A.J.: Finite element computational fluid mechanics, Hemisphere & McGraw-Hill, 1983.Google Scholar
  163. [A2]
    Holt, M.: Numerical methods in fluid dynamics, Springer, 1984.Google Scholar
  164. [A3]
    McCormick, S.F.: Multigrid methods, SIAM, 1987.Google Scholar
  165. [A4]
    Peyret, R. and Taylor, T.D.: Computational methods for fluid flow, Springer, 1983.Google Scholar
  166. [A5]
    Temam, R.: Numerical analysis, North-Holland, 1973.Google Scholar
  167. [1]
    Chaplygin, S.A.: ‘On gas jets’, NACA Techn. Mem 1063 (1944). (Nauchn. Tr. Moskov. Univ. Mat. Fiz. 21 (1904), 1-121)Google Scholar
  168. [2]
    Shi-i, Bai: The theory of jets, Moscow, 1960 (in Russian; translated from the English).Google Scholar
  169. [A1]
    Kuo, Y.H. and Sears, W.R.: ‘Plane subsonic and transonic potential flows’, in W.R. Sears (ed.): General theory of high speed aerodynamics, Princeton Univ. Press, 1954, pp. 490-582.Google Scholar
  170. [A2]
    Ferri, A.:’ supersonic flows with shock waves’, in W.R. Sears (ed.): General theory of high speed aerodynamics, Princeton Univ. Press, 1954, pp. 670-748.Google Scholar
  171. [A3]
    Courant, R. and Friedrichs, K.O.: Supersonic flow and shock waves, Interscience, 1948.Google Scholar
  172. [A4]
    Hill, R. and Pack, D.C.: ‘An investigation, by the method of characteristics, of the lateral expansion of the gases behind a detonating slab of explosive’, Proc. R. Soc. A 191 (1947), 524.MathSciNetMATHGoogle Scholar
  173. [A5]
    Bers, L.: Mathematical aspects of subsonic and transonic gas dynamics, Wiley, 1958.Google Scholar
  174. [1]
    Gâteaux, R.: ‘Sur les fonctionnelles continues et les fonctionnelles analytiques’, C.R. Acad Sci. Paris Sér. I Math. 157 (1913), 325–327.MATHGoogle Scholar
  175. [2]
    Kolmogorov, A.N. and Fomin, S.V.: Elements of the theory of functions and functional analysis, 1–2, Graylock, 1957–1961 (translated from the Russian).Google Scholar
  176. [3]
    Ljusternik, L.A. [L.A. Lyusternik] and Sobolew, W.I. [V.I. Sobolev]: Elemente der Funktionalanalysis, H. Deutsch, Frankfurt a. M., 1979 (translated from the Russian).Google Scholar
  177. [4]
    Averbukh, V.I. and Smolyanov, O.G.: ‘Theory of differentiation in linear topological spaces’, Russian Math. Surveys 22, no. 6 (1967), 201–258. (Uspekhi Mat. Nauk 22, no. 6 (1967), 201-260)Google Scholar
  178. [A1]
    Berger, M.S.: Nonlinearity and functional analysis, Acad. Press, 1977.Google Scholar
  179. [1]
    Ljusternik, L.A. [L.A. Lyusternik] and Sobolew, W.I. [V.I. Sobolev]: Elemente der Funktionalanalysis, H. Deutsch, Frankfurt a.M., 1979 (translated from the Russian).Google Scholar
  180. [2]
    Kolmogorov, A.N. and Fomin, S.V.: Elements of the theory of functions and functional analysis, 1–2, Graylock, 1957–1961 (translated from the Russian).Google Scholar
  181. [A1]
    Berger, M.S.: Nonlinearity and functional analysis, Acad. Press, 1977.Google Scholar
  182. [1A]
    Gâteaux, R.: ‘Sur les fonctionnelles continues et les fonctionnelles analytiques’, C.R. Acad Sci. Paris Sér. I Math. 157 (1913), 325–327.MATHGoogle Scholar
  183. [IB]
    Gâteaux, R.: ‘Fonctions d’une infinités des variables indépendantes’, Bull. Soc. Math. France 47 (1919), 70–96.MathSciNetGoogle Scholar
  184. [2]
    Lévy, P.: Leçons d’analyse fonctionnelle, Gauthier-Villars, 1922.Google Scholar
  185. [3]
    Lévy, P.: Problèmes concrets d’analyse fonctionelle, Gauthier-Villars, 1951.Google Scholar
  186. [A1]
    Berger, M.S.: Nonlinearity and functional analysis, Acad. Press, 1977.Google Scholar
  187. [1]
    Bogolyubov, N.N. and Shirkov, D.V.: Introduction to the theory of quantized fields, Interscience, 1959 (translated from the Russian).Google Scholar
  188. [A1]
    Moriyasu, K.: An elementary primer for gauge theory, World Scientific, 1983.Google Scholar
  189. [A2]
    O’Raifertaigh, L.: Group structure of gauge theories, Cambridge Univ. Press, 1986.Google Scholar
  190. [A3]
    Mayer, M.E.: ‘Geometric aspects of gauge theory’, in L.P. Horowitz and Y. Ne’eman (eds.): Proc. Vll-Colloq. Group Theoretical Methods in Physics, Israel Physical Society & A. Hilger, 1980, pp. 80-99.Google Scholar
  191. [A4]
    Blaine Lawson, Jr., M.: The theory of gauge fields in four dimensions, Amer. Math. Soc., 1985.Google Scholar
  192. [A5]
    Atiyah, M.F.: Geometry of Yang-Mills fields, Accad. Naz. dei Lincei, 1979.Google Scholar
  193. [1]
    Gauss, C.F.: Werke, Vol. 8, K. Gesellschaft Wissensch. Göttingen, 1900.Google Scholar
  194. [2]
    Bonnet, O.: J. École Polytechnique 19 (1848), 1–146.Google Scholar
  195. [3]
    Cohn-Vossen, S.E.: Some problems of differential geometry in the large, Moscow, 1959 (in Russian).Google Scholar
  196. [4]
    Sharafutdinov, V.A.: ‘Relative Euler class and the Gauss-Bonnet theorem’, Siberian Math. J. 14, no. 6 (1973), 930–940. (Sibirsk Mat. Zh. 14, no. 6, 1321-1635)MathSciNetGoogle Scholar
  197. [5]
    Allendörfer, C.B. and Weil, A.: ‘The Gauss—Bonnet theorem for Riemannian polyhedra’, Trans. Amer. Math. Soc. 53 (1943), 101–129.MathSciNetMATHGoogle Scholar
  198. [6]
    Eells, J.: ‘A generalization of the Gauss—Bonnet theorem’, Trans. Amer. Math. Soc. 92 (1959), 142–153.MathSciNetMATHGoogle Scholar
  199. [7]
    Pontryagin, L.S.: ‘On a connection between homologies and homotopies’, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 193–200 (in Russian).MathSciNetMATHGoogle Scholar
  200. [A1]
    Spivak, M.: A comprehensive introduction to differential geometry, 5, Publish or Perish, 1975.Google Scholar
  201. [A1]
    Knopp, K.: Theorie und Anwendung der unendlichen Reihen, Springer, 1964.Google Scholar
  202. [1]
    Zhelobenko, D.P.: Compact Lie groups and their representations. Amer. Math. Soc., 1973 (translated from the Russian).Google Scholar
  203. [1]
    Berezin, I.S. and Zhidkov, N.P.: Computing methods, 1, Pergamon, 1973 (translated from the Russian).Google Scholar
  204. [2]
    Bakhvalov, N.S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  205. [A1]
    Davis, P.J.: Interpolation and approximation, Dover, reprint, 1975.Google Scholar
  206. [A2]
    Hildebrand, F.B.: Introduction to numerical analysis, McGraw-Hill, 1974.Google Scholar
  207. [A3]
    Steffensen, J.F.: Interpolation, Chelsea, reprint, 1950.Google Scholar
  208. [1]
    Gauss, C.F.: ‘Theoria motus corporum coellestium’, in Werke, Vol. 7, 1809. English translation: C.H. Davis (ed.), Dover, 1963.Google Scholar
  209. [2]
    Laplace, P.S.: Théorie analytique des probabilités, Paris, 1812.Google Scholar
  210. [3]
    Todhunter, I.: A history of the mathematical theory of probability, Chelsea, reprint, 1949.Google Scholar
  211. [1]
    Gauss, C.F.: ‘Theoria motus corporum coelestium’, in Werke, Vol. 7, K. Gesellschaft Wissenschaft. Göttingen, 1809. English translation: C.H. Davis(ed.), Dover, 1963.Google Scholar
  212. [2]
    Poincaré, H.: Calcul des probabilités, Gauthier-Villars, 1912.Google Scholar
  213. [A1]
    Manin, Yu.: ‘Algebraic curves over fields with differentiation’, Transi. Amer. Math. Soc. 37 (1964), 59–78. (Izv. Akad. Nauk. SSSR Ser. Mat. 22 (1958), 737-756)MATHGoogle Scholar
  214. [A2]
    Katz, N.M.: ‘On the differential equations satisfied by period matrices’, Publ. Math. IHES 35 (1968), 71–106.MATHGoogle Scholar
  215. [A3]
    Grothendieck, A.: ‘On the de Rham cohomology of algebraic varieties’, Publ. Math. IHES 29 (1966), 351–359.MATHGoogle Scholar
  216. [A4]
    Katz, N.M. and Oda, T.: ‘On the differentiation of de Rham cohomology classes with respect to parameters’, J. Math. Kyoto Univ. 8″ (1968), 199–213.MathSciNetMATHGoogle Scholar
  217. [A5]
    Nilsson, N.:’ some growth and ramification properties of certain integrals on algebraic manifolds’, Arkiv för Mat. 5 (1963-1965), 527-540.Google Scholar
  218. [A6]
    Deligne, P.: Equations différentielles à points singuliers réguliers, Lecture notes in math., 163, Springer, 1970.Google Scholar
  219. [A7]
    Katz, N.M.: ‘The regularity theorem in algebraic geometry’, in Actes Congres International Mathématiciens Nice, 1970, Vol. 1, Gauthier-Villars, 1971, pp. 437–443.Google Scholar
  220. [A8]
    Griffiths, P.A.: ‘Periods of integrals on algebraic manifolds, I, II’, Amer. J. Math. 90 (1968), 568–626; 805-865.MathSciNetMATHGoogle Scholar
  221. [A9]
    Grothendieck, A.: Letter to J.-P. Serre, 5.10.1964.Google Scholar
  222. [A10]
    Brieskorn, E.: ‘Die Monodromie von isolierten Singularitäten von Hyperflächen’, Manuscr. Math. 2 (1970), 103–161.MathSciNetMATHGoogle Scholar
  223. [A11]
    Katz, N.M.: ‘Nilpotent connections and the monodromy theorem. Applications of a result of Turrittin’, Publ. Math. IHES 39 (1971), 175–232.Google Scholar
  224. [A12]
    Landman, A.: On the Picard—Lefschetz formula for algebraic manifolds acquiring general singularities, Berkeley, 1967. Thesis.Google Scholar
  225. [A13]
    Clemens, C.H.: ‘Picard—Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities’, Trans. Amer. Math. Soc. 136 (1969), 93–108.MathSciNetMATHGoogle Scholar
  226. [A14]
    , D.T.: ‘The geometry of the monodromy theorem’, in K.G. Ramanathan (ed.): C.P. Ramanujam, a tribute, Tata IFR Studies in Math., Vol. 8, Springer, 1978.Google Scholar
  227. [A15]
    Deligne, P.: ‘Théorème de Lefschetz et critères de dégénérescence de suites spectrales’, Publ. Math. IHES 35 (1968), 107–126.MATHGoogle Scholar
  228. [A16]
    Schmid, W.: ‘Variation of Hodge structure: the singularities of the period mapping’, Invent. Math. 22 (1973), 211–319.MathSciNetMATHGoogle Scholar
  229. [A17]
    Greuel, G.-M.: ‘Der Gauss-Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten’, Math. Ann. 214 (1975), 235–266.MathSciNetMATHGoogle Scholar
  230. [A18]
    Deligne, P.: ‘Le formalisme des cycles évanescents’, in A. Grothendieck, P. Deligne and N.M. Katz (eds.): Groupes de monodromie en géométrie algébrique. SGA VII 2 1967/69. Exp. XIII, Lecture notes in math., Vol. 340, Springer, 1973.Google Scholar
  231. [A19]
    Pham, F.: Singularités des systèmes différentiels de Gauss—Manin, Birkhäuser, 1979.Google Scholar
  232. [A20]
    Scherk, J. and Steenbrink, J.H.M.: ‘On the mixed Hodge structure on the cohomology of the Milnor fibre’, Math. Ann. 271 (1985), 641–665.MathSciNetMATHGoogle Scholar
  233. [A21]
    Varchenko, A.N.: ‘Asymptotic Hodge structure in the vanishing cohomology’, Math USSR Izv. 18 (1982), 469–512. (Izv. Akad. Nauk SSSR 45, no. 3 (1981), 540-591; 688)MATHGoogle Scholar
  234. [A22]
    Saito, M.: ‘Gauss—Manin system and mixed Hodge structure’, Proc. Japan Acad. Ser A 58 (1982), 29–32.MATHGoogle Scholar
  235. [1]
    Gauss, C.F.: ‘Beiträge zur Theorie der algebraischen Gleichungen’, in Werke, Vol. 3, K. Gesellschaft Wissenschaft. Göttingen, Göttingen, 1876, pp. 71-102.Google Scholar
  236. [2]
    Kurosh, A.G.: Higher algebra, Mir, 1972 (translated from the Russian).Google Scholar
  237. [3]
    Faddeev, D.K. and Faddeeva, V.N.: Computational methods of linear algebra, Freeman, 1963 (translated from the Russian).Google Scholar
  238. [4]
    Chernikov, S.N.: Lineare Ungleichungen, Deutsch. Verlag Wissenschaft., 1971 (translated from the Russian).Google Scholar
  239. [A1]
    Golub, G.H. and Loan, C.F. van: Matrix computations, North Oxford Acad., 1983.Google Scholar
  240. [A2]
    Wilkinson, J.H.: The algebraic eigenvalue problem, Clarendon Press, 1965.Google Scholar
  241. [A3]
    Strang, G.: Linear algebra and its application, Acad. Press, 1976.Google Scholar
  242. [A4]
    Dongarra, H., Bunch, J.R., Moler, C.B. and Stewart, G.W.: LINPACK users guide, SIAM, 1978.Google Scholar
  243. [A5]
    Wilkinson, J.H. and Reinsch, C.: Handbook for automatic computation, 2. Linear algebra, Springer, 1971.Google Scholar
  244. [A6]
    Bussinger, P.A.: ‘Monotoring the numerical stability of Gaussian elimination’, Numer. Math. 16 (1971), 360–361.MathSciNetGoogle Scholar
  245. [1]
    Gauss, C.F.: Disquisitions Arithmeticae, Yale Univ. Press, 1966 (translated from the Latin).Google Scholar
  246. [A1]
    Hardy, G.H. and Wright, E.M.: An introduction to the theory of numbers, Clarendon Press, 1960, Chapt. XV.Google Scholar
  247. [1]
    Gauss, C.F.: ‘Ueber ein allgemeines Grundgesetz der Mechanik’, J. Reine Angew. Math. 4 (1829), 232–235.MATHGoogle Scholar
  248. [2]
    Bolotov, E.A.: ‘On Gauss’ principle’, Izv. Fiz.-Mat. Obshch. Kazan Univ. (2) 21, no. 3 (1916), 99–152 (in Russian).Google Scholar
  249. [3]
    Chetaev, N.G.: ‘On Gauss’ principle’, Izv. Fiz.-Mat. Obshch. Kazan Univ. (3) 6 (1932–1933), 68-71 (in Russian).Google Scholar
  250. [4]
    Rumyantsev, V.V.: ‘On some variational principles in mechanics of continuous media’, J. Appl. Math. Mech. 37 (1973), 917–926. (Priklad. Mat. Mekh. 37, no. 6 (1973), 963-973)MathSciNetMATHGoogle Scholar
  251. [A1]
    Arnol’d, V.I.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).Google Scholar
  252. [A2]
    Whittaker, E.T.: Analytical dynamics of particles and rigid bodies, Dover, reprint, 1944.Google Scholar
  253. [A3]
    Lindsay, R.B. and Margenau, H.: Foundations of physics, Dover, reprint, 1957.Google Scholar
  254. [1]
    Gauss, C.F.: ‘Methodus nova integralium valores per approximationem inveniendi’, in Werke, Vol. 3, K. Gesellschaft Wissenschaft. Göttingen, 1886, pp. 163-196.Google Scholar
  255. [2]
    Krylov, N.M.: Approximate calculation of integrals, Macmillan, 1962 (translated from the Russian).Google Scholar
  256. [3]
    Krylov, V.I. and Shul’gina, L.T.: Handbook on numerical integration, Moscow, 1966 (in Russian).Google Scholar
  257. [4]
    Bakhvalov, N.S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  258. [5]
    Stroud, A.H. and Secrest, D.: Gaussian quadrature formulas, Prentice-Hall, 1966.Google Scholar
  259. [6]
    A standard program for the computation of single integrals of quadratures of Gauss’ type, Moscow, 1967 (in Russian).Google Scholar
  260. [A1]
    Hilderbrand, F.B.: Introduction to numerical analysis, McGraw-Hill, 1974.Google Scholar
  261. [A2]
    Abramowitz, M. and Stegun, I.A.: Handbook of mathematical functions, Appl. Math. Series, 25, Nat. Bur. Stand. & Dover, 1970.Google Scholar
  262. [A3]
    Christoffel, E.B.: ‘Ueber die Gausssche Quadratur und eine Verallgemeinerung derselben’, J. Reine Angew. Math. 55 (1858), 81–82.Google Scholar
  263. [A4]
    Davis, P.J. and Rabinowitz, P.: Methods of numerical integration, Acad. Press, 1984.Google Scholar
  264. [A5]
    Piessens, R., et al.: Quadpack, Springer, 1983.Google Scholar
  265. [1]
    Gauss, C.F.: Disquisitiones Arithmeticae, Yale Univ. Press, 1966 (translated from the Latin).Google Scholar
  266. [2]
    Winogradow, I.M. [I.M. Vinogradov]: Elemente der Zahlentheorie, Oldenburg, 1956 (translated from the Russian).Google Scholar
  267. [3]
    Hasse, H.: Vorlesungen über Zahlentheorie, Springer, 1950.Google Scholar
  268. [1]
    Kurosh, A.G.: Lectures on general algebra, Chelsea, 1963 (translated from the Russian).Google Scholar
  269. [1]
    Gauss, C.F.: Disquisitiones Arithmeticae, Yale Univ. Press, 1966 (translated from the Latin).Google Scholar
  270. [2]
    Vinogradov, I.M.: The method of trigonometical sums in the theory of numbers, Interscience, 1954 (translated from the Russian).Google Scholar
  271. [3]
    Davenport, H.: Multiplicative number theory, Springer, 1980.Google Scholar
  272. [4]
    Prachar, K.: Primzahlverteilung, Springer, 1957.Google Scholar
  273. [5]
    Hasse, H.: Vorlesungen über Zahlentheorie, Springer, 1950.Google Scholar
  274. [1]
    Gauss, C.F.: Allgemeine Flächentheorie, W. Engelmann, Leipzig, 1900 (translated from the Latin).Google Scholar
  275. [2]
    Blaschke, W.: Einführung in die Differentialgeometrie, Springer, 1950.Google Scholar
  276. [3]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grosse, Springer, 1968.Google Scholar
  277. [4]
    Eisenhart, L.P.: Riemannian geometry, Princeton Univ. Press, 1949.Google Scholar
  278. [5]
    Sternberg, S.: Lectures on differential geometry, Prentice-Hall, 1964.Google Scholar
  279. [6]
    Aleksandrov, A.D.: Die innere Geometrie der konvexen Flächen, Akademie-Verlag, 1955 (translated from the Russian).Google Scholar
  280. [7]
    Pogorelov, A.V.: Extrinsic geometry of convex surfaces, Amer. Math. Soc., 1973 (translated from the Russian).Google Scholar
  281. [A1]
    Berger, M. and Gostiaux, B.: Differential geometry, Springer, 1988 (translated from the French).Google Scholar
  282. [A2]
    Dombrowski, P.: ‘150 years after Gauss’, Astérisque 62 (1979).Google Scholar
  283. [A3]
    Do Carmo, M.: Differential geometry of curves and surfaces, Prentice Hall, 1976.Google Scholar
  284. [A4]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 2, Interscience, 1969.Google Scholar
  285. [A5]
    Spivak, M.: Differential geometry, 1–5, Publish or Perish, 1979.Google Scholar
  286. [1]
    Hille, E. and Phillips, R.: Functional analysis and semigroups, Amer. Math. Soc., 1957.Google Scholar
  287. [2]
    Ditkin, V.A. and Prudnkov, A.P.: ‘Integral transforms’, Itogi Nauk. Ser. Mat. Mat. Anal. (1966), 7-82 (in Russian).Google Scholar
  288. [A1]
    Sneddon, I.N.: The use of integral transforms, McGraw-Hill, 1972.Google Scholar
  289. [1]
    Gauss, C.F.: ‘Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehung-und Abstössungs-Kräfte’, in Werke, Vol. 5, K. Gesellschaft Wissenschaft. Göttingen, 1877, pp. 195-242.Google Scholar
  290. [2]
    Landkof, N.S. [N.S. Landkov]: Foundations of modern potential theory, Springer, 1972 (translated from the Russian).Google Scholar
  291. [3]
    Brelot, E.: Eléments de la théorie classique du potentiel, Sorbonne Univ. Paris, 1959.Google Scholar
  292. [A1]
    Doob, J.L.: Classical potential theory and its probabilistic counterpart, Springer, 1984.Google Scholar
  293. [1]
    Wozencraft, J. and Jacobs, I.: Theoretical foundations of communication techniques, Moscow, 1969 (in Russian; translated from the English).Google Scholar
  294. [1]
    Gauss, C.F.: Allgemeine Flächentheorie, W. Engelmann, 1900 (translated from the Latin).Google Scholar
  295. [2]
    Blaschke, W. and Reichardt, H.: Einführung in die Differentialgeometrie, Springer, 1960.Google Scholar
  296. [1]
    Doob, J.L.: Stochastic processes, Chapman and Hall, 1953.Google Scholar
  297. [2]
    Ibragimov, I.A. and Rozanov, Yu.A.: Gaussian random processes, Springer, 1978 (translated from the Russian).Google Scholar
  298. [3]
    Cramér, H. and Leadbetter, M.R.: Stationary and related stochastic processes, Wiley, 1967.Google Scholar
  299. [4]
    Itô, K.: ‘Multiple Wiener integral’, J. Math. Soc. Japan 3, no. 1 (1951), 157–169.MathSciNetMATHGoogle Scholar
  300. [5]
    Itô, K.: ‘Complex multiple Wiener integral’, Japan J. Math. 22 (1952), 63–86.MATHGoogle Scholar
  301. [A1]
    Neveu, J.: Processus aléatoires Gaussiens, Presses Univ. Montréal, 1968.Google Scholar
  302. [A2]
    Fernique, X.: ‘Fonctions aléatores gaussiennes, les résultatsGoogle Scholar
  303. [1]
    Ditkin, V.A. and Prudnikov, A.P.: ‘Operational calculus’, Progress in Math. 1 (1968), 1–75. (Itogi Nauk. Ser. Mat. Anal. 1996 (1967), 7-82)Google Scholar
  304. [A1]
    Butzer, P.L., Stens, R.L. and Wehrens, M.: ‘The continuous Legendre transform, its inverse transform, and applications,’, Internat J. Math. Sci. 3 (1980), 47–67.MathSciNetMATHGoogle Scholar
  305. [A2]
    Koornwinder, T.H. and Walter, G.G.: ‘The finite continuous Jacobi transform and its inverse’, J. Approx. Theory (To appear).Google Scholar
  306. [1]
    Gel’fand, I.M.: ‘Normierte Ringe’, Mat. Sb. 9 (51), no. 1 (1941), 3–24.Google Scholar
  307. [A1]
    Yosida, K.: Functional analysis, Springer, 1980.Google Scholar
  308. [A2]
    Rudin, W.: Functional analysis, McGraw-Hill, 1979.Google Scholar
  309. [1]
    Gellerstedt, S.: ‘Quelques problèmes mixtes pour l’équation y m z xx +zyy =0’, Ark. Mat. Astr. Fysik 26A, no. 3 (1937), 1–32.Google Scholar
  310. [2]
    Tricomi, F.G.: Integral equations, Interscience, 1957.Google Scholar
  311. [3]
    Smirnov, M.M.: Equations of mixed type, Amer. Math. Soc., 1978 (translated from the Russian).Google Scholar
  312. [A1]
    Bers, L.: Mathematical aspects of subsonic and transonic gas dynamics, Wiley, 1958.Google Scholar
  313. [1]
    Shmidt, O.Yu.: Abstract theory of groups, Freeman, 1966 (translated from the Russian).Google Scholar
  314. [2]
    Waerden, B.L. van der: Algebra, 1–2, Springer, 1967–1971 (translated from the German).Google Scholar
  315. [3]
    Kurosh, A.G.: Lectures on general algebra, Chelsea, 1963 (translated from the Russian).Google Scholar
  316. [4]
    Kurosh, A.G.: General algebra. Lectures for the academic year 1969/70, Moscow, 1974 (in Russian).Google Scholar
  317. [5]
    Mal’tsev, A.I.: Algebraic systems, Springer, 1973 (translated from the Russian).Google Scholar
  318. [6]
    Suzuki, M.: Structure of a group and the structure of its lattice of subgroups, Springer, 1956.Google Scholar
  319. [A1]
    Burnside, W.: Theory of groups of finite order, Cambridge Univ. Press, 1897.Google Scholar
  320. [A2]
    Schoenflies, A.: Kristallsysteme und Kristallstruktur, Teubner, 1891.Google Scholar
  321. [1]
    Artin, E.: Geometric algebra, Interscience, 1957.Google Scholar
  322. [2]
    Dieudonné, J.A.: La géométrie des groups classiques, Springer, 1955.Google Scholar
  323. [3]
    Bass, H.: Algebraic K-theory, Benjamin, 1968.Google Scholar
  324. [1]
    Mumford, D.: Geometric invariant theory, Springer, 1965.Google Scholar
  325. [2]
    Lang, S.: Introduction to differentiable manifolds, Interscience, 1967, App. III.Google Scholar
  326. [3]
    Arnol’d, V.I.: Chapitres supplémentaires de la théorie des équations différentielles ordinaires. Mir, 1980 (translated from the Russian).Google Scholar
  327. [4]
    Eells, J. and McAlpin, J.: ‘An approximate Morse—Sard theorem’, J. Math. Mech. 17, no. 11 (1968), 1055–1064.MathSciNetMATHGoogle Scholar
  328. [5]
    Quinn, F.: ‘Transversal approximation on Banach manifolds’, in Global analysis, Proc. Symp. Pure Math., Vol. 15, Amer. Math. Soc., 1970, pp. 213-222.Google Scholar
  329. [6]
    Gutierrez, C: ‘Structural stability of flows on the torus with a cross-cap’, Trans. Amer. Math. Soc. 241 (1978), 311–320.MathSciNetMATHGoogle Scholar
  330. [7]
    Gutierrez, C.: ‘Smooth nonorientable nontrivial recurrence on two-manifolds’, J. Differential Equations 29, no. 3 (1978), 388–395.MathSciNetMATHGoogle Scholar
  331. [8]
    Kurland, H. and Robbin, J.: ‘Infinite codimension and transversality’, in Dynamical systems, Warwick 1974, Lecture notes in math., Vol. 468, Springer, 1975, pp. 135-150.Google Scholar
  332. [9]
    Takens, F.: ‘Tolerance stability’, in Dynamical systems, Warwick 1974, Lecture notes in math., Vol. 468, Springer, 1975, pp. 293–304.MathSciNetGoogle Scholar
  333. [10]
    Dobrynskiĭ, V.A. and Sharkovskiĭ, A.N.: ‘Typicalness of dynamical systems almost all paths of which are stable under permanently acting perturbations’, Soviet Math. Dokl. 14, no. 4 (1973), 997–1000. (Dokl. Akad Nauk SSSR 211, no. 2 (1973), 273-276)Google Scholar
  334. [11A]
    Arnol’d, V.I.: ‘Small denominators, I. Mapping the circle onto itself’, Izv. Akad Nauk SSSR Ser. Mat. 25, no. 1 (1961), 21–86 (in Russian).MathSciNetGoogle Scholar
  335. [11B]
    Arnol’d, V.I.: ‘Correction to’ small denominators, I. Mapping the circle onto itself’, Izv. Akad Nauk SSSR Ser. Mat. 28, no. 2 (1964), 479–480 (in Russian).MathSciNetGoogle Scholar
  336. [12]
    Wall, C.: ‘Geometric properties of generic differentiable manifolds’, in Geometry and topology, Lecture notes in math., Vol. 597, Springer, 1977, pp. 707–774.Google Scholar
  337. [13]
    Klingenberg, W.: Lectures on closed geodesics, Springer, 1978.Google Scholar
  338. [14]
    Arnol’d, V.I., Varchenko, A.N. and Gusein-Zade, S.M. [S.M. Khuseĭn-Zade]: Singularities of differentiable maps, 1, Birkhäuser, 1985 (translated from the Russian).Google Scholar
  339. [15]
    Arnol’d, V.I., Afraĭmovich, V.S., Ilyashenko, Yu.S. and Shil’nikov, L.P.: Dynamical systems, 5, Springer, forthcoming (translated from the Russian).Google Scholar
  340. [A1]
    Thom, R.: ‘Un lemma sur les applications différentiable’, Bol. Soc. Math. Mexico 1, no. 2 (1956), 59–71.MathSciNetMATHGoogle Scholar
  341. [A2]
    Boardman, J.M.: ‘Singularities of différentiable maps’, Publ. Math. IHES 33 (1967), 383–419.Google Scholar
  342. [A3]
    Bröcker, Th. and Lander, L.: Differentiable germs and catastrophes, Cambridge Univ. Press, 1975.Google Scholar
  343. [A4]
    Oxtoby, J.C.: Measure and category, Springer, 1971 (translated from the German).Google Scholar
  344. [1]
    Novikov, P.S.: Elements of mathematical logic, Oliver & Boyd and Addison-Wesley, Edinburgh, 1964 (translated from the Russian).Google Scholar
  345. [2]
    Mendelson, E.: Introduction to mathematical logic, v. Nostrand, 1964.Google Scholar
  346. [A1]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  347. [A2]
    Rogers, jr., H.: Theory of recursive functions and effective computability, McGraw-Hill, 1967.Google Scholar
  348. [1]
    Stepanov, V.V.: A course of differential equations, Moscow, 1959 (in Russian).Google Scholar
  349. [2]
    Erugin, N.P.: A reader for a general course in differential equations, Minsk, 1979 (in Russian).Google Scholar
  350. [A1]
    Hale, J.K.: Ordinary differential equations, Wiley, 1980.Google Scholar
  351. [A2]
    Ince, E.L.: Ordinary differential equations, Dover, reprint, 1956.Google Scholar
  352. [1]
    Aleksandrov, P.S.: Theory of functions of a real variable and the theory of topological spaces, Moscow, 1978, pp. 280-358 (in Russian).Google Scholar
  353. [2]
    Aleksandrov, P.S.: ‘Some results in the theory of topological spaces obtained within the last twenty-five years’, Russian Math. Surveys 15, no. 2 (1960), 23–83. (Uspekhi Mat. Nauk 15, no. 2 (1960), 25-95)MathSciNetMATHGoogle Scholar
  354. [3A]
    Aleksandrov, P.S.: ‘On some basic directions in general topology’, Russian Math. Surveys 19, no. 6 (1964), 1–39. (Uspekhi Mat. Nauk 19, no. 6 (1964), 3-46)MATHGoogle Scholar
  355. [3B]
    Aleksandrov, P.S.: ‘Corrections to ‘On some basic directions in general topology’, Russian Math. Surveys 20, no. 1 (1965), 177–178. (Uspekhi Mat. Nauk 20, no. 1 (1965), 253-254)MATHGoogle Scholar
  356. [4]
    Aleksandrov, P.S. and Fedorchuk, V.V.: ‘The main aspects in the development of set-theoretical topology’, Russian Math. Surveys 33, no. 3 (1978), 1–53. (Uspekhi Mat. Nauk 33, no. 3 (1978), 3-48)MATHGoogle Scholar
  357. [5]
    Arkhangel’skiĭ, A.V.: ‘Mappings and spaces’, Russian Math. Surveys 21, no. 4 (1966), 115–162. (Uspekhi Mat. Nauk 21, no. 4 (1966), 133-184)MathSciNetGoogle Scholar
  358. [6]
    Arkhangel’skiĭ, A.V.: ‘Structure and classification of topological spaces and cardinal invariants’, Russian Math. Surveys 33, no. 6 (1978), 29–84. (Uspekhi Mat. Nauk 33, no. 6 (1978), 29-84)Google Scholar
  359. [A1]
    Arkhangel’skiĭ, A.V.: ‘Function spaces in the topology of pointwise convergence, and compact sets’, Russian Math. Surveys 39, no. 5 (1984), 9–56. (Uspekhi Mat. Nauk 39, no. 5(1984), 11-50)Google Scholar
  360. [A2]
    Arkhangel’skiĭ, A.V.: ‘Classes of topological groups’, Russian Math. Surveys 36, no. 3 (1981), 151–174. (Uspekhi Mat. Nauk 36, no. 3 (1981), 127-146)Google Scholar
  361. [A3]
    Engelking, R.: General topology, PWN & North-Holland, 1977.Google Scholar
  362. [A4]
    Kunen, K. and Vaughan, J.E.: Handbook of set-theoretic topology, North-Holland, 1984.Google Scholar
  363. [1]
    Shafarevich, I.R., et al.: ‘Algebraic surfaces’, Proc. Steklov Inst. Moth. 75 (1967). (Trudy Mat. Inst. Steklov. 75 (1965))Google Scholar
  364. [2]
    Bogomolov, F.A.: ‘Holomorphic tensors and vector bundles on protective varieties’, Math. USSR-Izv. 13, no. 3 (1979), 499–555. (Izv. Akad Nauk SSSR Ser. Mat. 42 (1978), 1227-1287)MathSciNetMATHGoogle Scholar
  365. [3]
    Beauville, A.:’ surfaces algébriques complexes’, Astérisque 54 (1978).Google Scholar
  366. [4]
    Bombieri, E.: ‘Canonical models of surfaces of general type’, Publ. Math. IHES 42 (1972), 447–495.Google Scholar
  367. [5]
    Bombieri, E. and Catanese, F.: The tricanonical map of surfaces with K=2, p g= 0’, in C.P. Ramanujam, A tribute, Springer, 1978, pp. 279-290.Google Scholar
  368. [6]
    Bombieri, E. and Husbmoller, D.: ‘Classification and embeddings of surfaces’, in R. Hartshorne (ed.): Algebraic Geometry, Proc. Symp. Pure Math., Vol. 29, Amer. Math. Soc., 1974, pp. 329-420.Google Scholar
  369. [7]
    Horkawa, E.: ‘Algebraic surfaces of general type with small \(c_1^2\), I’, Ann. of Math. 104 (1976), 357–387.MathSciNetGoogle Scholar
  370. [8A]
    Horkawa, E.: ‘Algebraic surfaces of general type with small \(c_1^2\), II’, Invent. Math. 37 (1976), 121–155.MathSciNetGoogle Scholar
  371. [8B]
    Horkawa, E.: ‘Algebraic surfaces of general type with small \(c_1^2\), III’, Invent.Math. 47 (1978), 209–248.MathSciNetGoogle Scholar
  372. [8C]
    Horkawa, E.: ‘Algebraic surfaces of general type with small \(c_1^2\), IV’, Invent. Math. 50 (1978-1979), 103–128.MathSciNetGoogle Scholar
  373. [9]
    Kodaira, K.: ‘Pluricanonical systems on algebraic surfaces of general type’, J. Math. Soc Japan 20 (1968), 170–192.MathSciNetMATHGoogle Scholar
  374. [10]
    Miyaoka, Y.: ‘On the Chern numbers of surfaces of general type’, Invent. Math. 42 (1977), 225–237.MathSciNetMATHGoogle Scholar
  375. [A1]
    Barth, W., Peters, C. and Ven, A. van de: Compact complex surfaces, Springer, 1984.Google Scholar
  376. [A2]
    Ekedahl, T.: ‘Canonical models of surfaces of general type in positive characteristic’, Publ. Math. IHES 67 (1988), 97–144.MathSciNetMATHGoogle Scholar
  377. [1]
    Kleene, S.C.: Mathematical logic, Wiley, 1967.Google Scholar
  378. [1]
    Levitan, B.M.: Almost-periodic functions, Moscow, 1953 (in Russian).Google Scholar
  379. [2]
    Besicovitch, A.S.: Almost periodic functions, Cambridge Univ. Press, 1932.Google Scholar
  380. [3]
    Amerio, L. and Prouse, G.: Almost-periodic functions and functional equations, v. Nostrand Reinhold, 1971.Google Scholar
  381. [4]
    Bochner, S.: ‘Abstrakte fastperiodische Funktionen’, Acta Math 61 (1933), 149–184.MathSciNetGoogle Scholar
  382. [5]
    Marchenko, V.A.: ‘Some questions in the theory of one-dimensional linear second-order differential operators’, Trudy Moskov. Mat. Obshch. 2 (1953), 3–83 (in Russian).Google Scholar
  383. [6]
    Levin, B.Ya.: ‘On the almost-periodic functions of Levitan’, Ukrain. Mat. Zh. 1 (1949), 49–101 (in Russian).MATHGoogle Scholar
  384. [7]
    Besicovitch, A.S. and Bohr, H.: ‘Almost periodicity and general trigonometric series’, Acta Math. 57 (1931), 203–292.MathSciNetGoogle Scholar
  385. [8]
    Levitan, B.M. and Zhkov, V.V.: Almost-periodic functions and differential equations, Cambridge Univ. Press, 1982 (translated from the Russian).Google Scholar
  386. [9]
    Fréchet, M.: ‘Les fonctions asymptotiquement presque-périodiques continues’, C.R. Acad Sci. Paris 213 (1941), 520–522.MathSciNetGoogle Scholar
  387. [10]
    Fréchet, M.: ‘Les transformations asymptotiquement presque périodiques discontinues et le lemme ergodique I’, Proc. Roy. Soc. Edinburgh Sect. A 63 (1950), 61–68.MathSciNetMATHGoogle Scholar
  388. [A1]
    Burckel, R.B.: Weakly almost-periodic functions on semigroups, Gordon & Breach, 1970.Google Scholar
  389. [A2]
    Leeuw, K.S. de and Glicksberg, I.: ‘Almost periodic functions on semigroups’, Acta Math. 105 (1961), 99–140.MathSciNetMATHGoogle Scholar
  390. [A3]
    Eberlein, W.F.: ‘Abstract ergodic theorems and weak almost periodic functions’, Trans. Amer. Math. Soc. 67 (1949), 217–240.MathSciNetMATHGoogle Scholar
  391. [A4]
    Landstadt, M.B.: ‘On the Bohr compactification of a transformation group’, Math. Z. 127 (1972), 167–178.MathSciNetGoogle Scholar
  392. [A5]
    Levttan, B.M.: ‘The application of generalized displacement operators to linear differential equations of the second order’, Transi. Amer. Math. Soc. (1) 10 (1950), 408–451. (Uspekhi Math. Nauk 4, no. 1(29) (1949), 3-112)Google Scholar
  393. [A6]
    Milnes, P.: ‘On vector-valued weakly almost periodic functions’, J. London Math. Soc. (2) 22 (1980), 467–472.MathSciNetMATHGoogle Scholar
  394. [A7]
    Reich, A.: ‘Präkompakte Gruppen und Fastperiodicität’, Math. Z 116 (1970), 216–234.Google Scholar
  395. [1]
    Vekua, I.N.: Generalized analytic functions, Pergamon, 1962 (translated from the Russian).Google Scholar
  396. [A1]
    Bers, L.: ‘An outline of the theory of pseudo-analytic functions’, Bull. Amer. Math. Soc. 62 (1956), 291–331.MathSciNetMATHGoogle Scholar
  397. [A2]
    Bers, L.: Theory of pseudo-analytic functions, New York Univ., 1953.Google Scholar
  398. [A3]
    Rodin, Yu.L.: Generalized analytic functions on Riemann surfaces, Springer, 1987.Google Scholar
  399. [A4]
    Rodin, Yu.L.: The Riemann boundary problem on Riemann surfaces, Reidel, 1988.Google Scholar
  400. [1]
    Dold, A.: ‘Relations between ordinary and extraordinary homology’, in Colloq. Algebraic Topology, August 1–10, 1962, Aarhus Univ., 1962, pp. 2-9.Google Scholar
  401. [2]
    Eilenberg, S. and Steenrod, N.E.: Foundations of algebraic topology, Princeton Univ. Press, 1952.Google Scholar
  402. [3]
    Conner, P.E. and Floyd, E.E.: Differentiable periodic maps, Springer, 1964.Google Scholar
  403. [4]
    Whitehead, G.W.: Recent advances in homotopy theory, Amer. Math. Soc., 1970.Google Scholar
  404. [5]
    Switzer, R.: Algebraic topology-homotopy and homology, Springer, 1975.Google Scholar
  405. [6]
    Novikov, S.P.: ‘The method of algebraic topology from the viewpoint of cobordism theories’, Math. USSR-Izv. 1 (1967), 827–913. (Izv. Akad. Nauk SSSR Ser. Mat. 31, no. 4 (1967), 855-951)Google Scholar
  406. [7]
    Atiyah, M.F.: ‘Thorn complexes’, Proc. London Math. Soc. 11 (1961), 291–310.MathSciNetMATHGoogle Scholar
  407. [8]
    Adams, J.F.: Stable homotopy and generalised homology, Univ. of Chicago, 1974.Google Scholar
  408. [9]
    Dyer, E. and Kahn, D.: ‘Some spectral sequences associated with fibrations’, Trans. Amer. Math. Soc. 145 (1969), 397–437.MathSciNetMATHGoogle Scholar
  409. [10]
    Araki, S. and Yosimura, Z.: ‘A spectral sequence associated with a cohomology theory of infinite CW-complexes’, Osaka J. Math. 9, no. 3 (1972), 351–365.MathSciNetMATHGoogle Scholar
  410. [11]
    Dyer, E.: Cohomology theories, Benjamin, 1969.Google Scholar
  411. [1]
    Sobolev, S.L.: ‘Le problème de Cauchy dans l’espace des fonctionnelles’, Dokl Akad Nauk SSSR 3 (1935), 291–294.Google Scholar
  412. [2]
    Sobolev, S.L.: ‘Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales’, Mat. Sb. 1 (1936), 39–72.MATHGoogle Scholar
  413. [3]
    Levi, B.: ‘Sul principio di Dirichlet’, Rend Circ. Mat. Palermo 22 (1906), 293–359.MATHGoogle Scholar
  414. [4]
    Nikol’skiĭ, S.M.: Approximation of functions of several variables and imbedding theorems, Springer, 1975 (translated from the Russian).Google Scholar
  415. [A1]
    Agmon, S.: Lectures on elliptic boundary value problems, v. Nostrand, 1965.Google Scholar
  416. [1]
    Delsarte, J.: ‘Sur une extension de la formule de Taylor’, J. Math. Pures Appl 17 (1938), 213–231.Google Scholar
  417. [2]
    Delsarte, J.: ‘Une extension nouvelle de la théorie des fonctions presque-périodiques de Bohr’, Acta Math. 69 (1938), 259–317.MathSciNetGoogle Scholar
  418. [3]
    Delsarte, J.: Colloque Internat. CNRS, 1956, pp. 29-45.Google Scholar
  419. [4]
    Levitan, B.M.: ‘The application of generalized displacement operators to linear differential equations of the second order’, Transl. Amer. Math. Soc. Ser. 1 10 (1962), 408–541. (Uspekhi Mat. Nauk 4, no. 1 (1949), 3-112)Google Scholar
  420. [5]
    Levitan, B.M.: The theory of generalized displacement operators, Moscow, 1973 (in Russian).Google Scholar
  421. [6A]
    Levitan, B.M.: ‘Normed rings generated by the generalized shift operator’, Dokl Akad Nauk SSSR 47 (1945), 3–6 (in Russian).Google Scholar
  422. [6B]
    Levitan, B.M.: ‘A theorem on the representation of positive-definite functions for the generalized shift operator’, Dokl. Akad. Nauk SSSR 47 (1945), 163–165 (in Russian).Google Scholar
  423. [6C]
    Levitan, B.M.: ‘Plancherel’s theorem for the generalized shift operator’, Dokl. Akad Nauk SSSR 47 (1945), 323–326. (in Russian).Google Scholar
  424. [6D]
    Levitan, B.M.: ‘A duality law for the generalized shift operator’, Dokl. Akad Nauk SSSR 47 (1945), 401–403. (in Russian).MathSciNetGoogle Scholar
  425. [7]
    Levitan, B.M.: ‘Converse Lie theorems for general generalized shift operators’, Dokl. Akad Nauk SSSR 123 (1958), 243–245. (in Russian).MathSciNetMATHGoogle Scholar
  426. [8]
    Berezanskiĭ, Yu.M. and Kreĭn, S.G.: ‘Hypercomplex systems with continuous basis’, Transi. Amer. Math. Soc. Ser. 1 16 (1960), 358–364. (Uspekhi Mat. Nauk 12, no. 1 (1957), 147-152)Google Scholar
  427. [9A]
    Krasichkov, I.F.: ‘Closed ideals in locally convex algebras of entire functions’, Math. USSR-Izv. 1, no. 1 (1967), 35–56. (Izv. Akad Nauk SSSR Ser. Mat. 31, no. 1 (1967), 37-60)Google Scholar
  428. [9B]
    Krasichkov, I.F.: ‘Closed ideals in locally convex algebras of entire functions II’, Math. USSR-Izv. 2, no. 5 (1968), 979–986. (Izv. Akad Nauk SSSR Ser Mat. 32, no. 5 (1968), 1024-1032)Google Scholar
  429. [10]
    Grabovskaya, R.Ya. and Kreĭn, S.G.: ‘Second order differential equations with operators generating a Lie algebra representation’, Math. Nachr. 75 (1976), 9–29.MathSciNetMATHGoogle Scholar
  430. [11]
    Grabovskaya, R.Ya., Kononenko, V.I. and Osipov, V.B.: ‘On a family of generalized shift operators’, Math. USSR-Izv. 11, no. 4 (1977), 865–888. (Izv. Akad Nauk SSSR Ser. Mat. 41, no. 4 (1977), 912-936)MATHGoogle Scholar
  431. [12]
    Maslov, V.P.: Teoret. Mat. Fiz. 33 (1977), 185–209.MathSciNetMATHGoogle Scholar
  432. [13]
    Rashevskiĭ, P.K.: ‘Description of the closed invariant sub-spaces of certain function spaces’, Proc. Moscow Math. Soc. 38, no. 2 (1980), 137–182. (Trudy Moskov. Mat. Obshch. 38 (1979), 139-185)Google Scholar
  433. [14]
    Gurevich, D.I.: ‘Generalized displacement operators with a right infinitesimal Sturm—Liouville operator’, Math. Notes 25, no. 3, 208–215. (Mat. Zametki 25, no. 3 (1979), 393-408)MathSciNetMATHGoogle Scholar
  434. [15]
    Dunkl, C.F.: ‘The measure algebra of a locally compact hypergroup’, Trans. Amer. Math. Soc. 179 (1973), 331–348.MathSciNetMATHGoogle Scholar
  435. [16]
    Jewett, R.I.: ‘Spaces with an abstract convolution of measures’, Adv. in Math. 18, no. 1 (1975), 1–101.MathSciNetMATHGoogle Scholar
  436. [17]
    Spector, R.: ‘Aperçu de la théorie des hypergroups’, in Anal. Harmonique des Groupes de Lie. Sem. Nancy-Strasbourg, Lecture notes in math., Vol. 497, Springer, 1975, pp. 643-673.Google Scholar
  437. [18]
    Spector, R.: ‘Mesures invariantes sur les hypergroupes’, Trans. Amer. Math. Soc. 239 (1978), 147–165.MathSciNetMATHGoogle Scholar
  438. [19]
    Ross, K.A.: ‘Hypergroups and centers of measure algebras’, Symposia Math., Vol. 22, Acad. Press, 1977, pp. 189-203.Google Scholar
  439. [20]
    Litvinov, G.L.: ‘Generalized shift operators and their representations’, Trudy Sem. Vektor. Tenzor. Anal, no. 18 (1978), 345–371 (in Russian).MathSciNetMATHGoogle Scholar
  440. [21]
    Chilana, A.K. and Ross, K.A.: ‘Spectral synthesis in hypergroups’, Pacific J. Math. 76 (1978), 313–328.MathSciNetMATHGoogle Scholar
  441. [22]
    Chilana, A.K. and Kumar, A.: ‘Spectral synthesis in Segal algebras on hypergroups’, Pacific J. Math. 80, no. 1 (1979), 59–76.MathSciNetMATHGoogle Scholar
  442. [23]
    Koornwinder, T.: ‘The addition formula for Jacobi polynomials and spherical harmonics. Lie algebras: applications and computational methods’, Siam. J. Appl Math. 25, no. 2 (1973), 236–236.MathSciNetMATHGoogle Scholar
  443. [A1]
    Chébli, H.: ‘Opérateurs de translation généralisée et semi-groupes de convolution’, in J. Faraut (ed.): Théorie du potentiel et analyse harmonique, Lecture notes in math., Vol. 404, Springer, 1974, pp. 36-59.Google Scholar
  444. [A2]
    Vainerman, L.I.: ‘Duality of algebras with an involution and generalized shift operators’, J. Soviet Math. 42 (1988), 2113–2138. (Itogi Nauk. i Tekhn. Mat Anal. 24 (1986), 165-206)Google Scholar
  445. [1]
    Dirac, P.A.M.: The principles of quantum mechanics. Clarendon Press, 1947.Google Scholar
  446. [2]
    Sobolev, S.L.: ‘Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales’, Mat. Sb. 1 (1936), 39–72.MATHGoogle Scholar
  447. [3]
    Schwartz, L.: Théorie des distributions, 1–2, Hermann, 1950–1951.Google Scholar
  448. [4]
    Bogolyubov, N.N., Logunov, AA. and Todorov, I.T.: Introduction to axiomatic quantum field theory, Benjamin, 1975 (translated from the Russian).Google Scholar
  449. [5]
    Gel’fand, I.M. and Shilov, G.E.: Generalized functions, 1–5, Acad. Press, 1966–1968 (translated from the Russian).Google Scholar
  450. [6]
    Vladimirov, V.S.: Equations of mathematical physics, Mir, 1984 (translated from the Russian).Google Scholar
  451. [7]
    Vladimirov, V.S.: Generalized functions in mathematical physics, Mir, 1979 (translated from the Russian).Google Scholar
  452. [8]
    Antosik, P., Mikusinski, J. and Sikorski, R.: Theory of distributions. The sequential approach, Elsevier, 1973.Google Scholar
  453. [A1]
    Yosida, K.: Functional analysis, Springer, 1980.Google Scholar
  454. [A2]
    Jones, D.S.: The theory of generalized functions, Cambridge Univ. Press, 1982.Google Scholar
  455. [A3]
    Rudin, W.: Functional analysis, McGraw-Hill, 1974.Google Scholar
  456. [A4]
    Hörmander, L.V.: The analysis of linear partial differential operators, 1, Springer, 1983.Google Scholar
  457. [1]
    Schwartz, L.: Théorie des distributions, 1, Hermann, 1950.Google Scholar
  458. [2]
    Sobolev, S.L.: Applications of functional analysis in mathematical physics, Amer. Math. Soc., 1963 (translated from the Russian).Google Scholar
  459. [A1]
    Yosida, K.: Functional analysis, Springer, 1980.Google Scholar
  460. [A2]
    Hörmander, L.: The analysis of linear partial differential operators, 1, Springer, 1983.Google Scholar
  461. [1]
    Schwartz, L.: Théorie des distributions, 1–2, Herman, 1950–1951.Google Scholar
  462. [2]
    Vladimirov, V.S.: Generalized functions in mathematical physics, Mir, 1979 (translated from the Russian).Google Scholar
  463. [3]
    Bogolyubov, N.N. and Parasyuk, O.S.: ‘Ueber die Multiplication der Kausalfunktionen in der Quantentheorie der Felder’, Acta Math 97 (1957), 227–266.MathSciNetMATHGoogle Scholar
  464. [4]
    Hepp, K.: Théorie de la renormalisation, Springer, 1969.Google Scholar
  465. [A1]
    Colombeau, J.F.: New generalized functions and multiplication of distributions, North-Holland, 1984.Google Scholar
  466. [A2]
    Keller, K.: ‘Analytic regularizations, finite part prescriptions and products of distributions’, Math. Ann. 236 (1978), 49–84.MathSciNetMATHGoogle Scholar
  467. [A3]
    Koornwinder, T.H. and Looder, J.J.: ‘Generalized functions’, in P.L Butzer, R.L. Stens and B. Sz.-Nagy (eds.): An aniversary volume on approximation theory and functional analysis, Birkhäuser, 1984, pp. 151-164.Google Scholar
  468. [A4]
    Hörmander, L.: The analysis of linear partial differential operators, 1, Springer, 1983.Google Scholar
  469. [1]
    Schwartz, L: Théorie des distributions, 1–2, Hermann, 1950–1951.Google Scholar
  470. [2]
    Bourbaki, N.: Elements of mathematics. Topological vector spaces, Addison-Wesley, 1977 (translated from the French).Google Scholar
  471. [3]
    Dieudonné, J. and Schwartz, L.: ‘La dualité dans les espaces (ℱ) et (ℒℱ)’, Ann. Inst. Fourier 1 (1949), 61–101.MATHGoogle Scholar
  472. [4]
    Grothendieck, A.: ‘Sur les espaces (F) et (DF)’ Summa Brasil. Math. 3, no. 6 (1954), 57–123.MathSciNetGoogle Scholar
  473. [5]
    Gel’fand, I.M. and Shilov, G.E.: Generalized functions, 2, Acad. Press, 1968 (translated from the Russian).Google Scholar
  474. [6]
    Yoshinaga, K.: ‘On a locally convex space introduced by J.S.E. Silva’, J. Sci. Hiroshima Univ. Ser. A 21 (1957), 89–98.MathSciNetMATHGoogle Scholar
  475. [7]
    Kawai, T.: ‘On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients’, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. (1970), 467-517.Google Scholar
  476. [8]
    Vladimirov, V.S.: Generalized functions in mathematical physics, Mir, 1979 (translated from the Russian).Google Scholar
  477. [A1]
    Treves, F.: Topoiogical vector spaces, distributions and kernels, Acad. Press, 1967.Google Scholar
  478. [A2]
    Zemanian, A.H.: Generalized integral transformations, Interscience, 1968.Google Scholar
  479. [A3]
    Bruijn, N.G. de: ‘A theory of generalized functions with applications to Wigner distribution and Weyl correspondence’, Niew Archief for Wiskunde (3) 21 (1973), 205–280.MATHGoogle Scholar
  480. [A4]
    Eijndhoven, S.J.L. van and Graaf, J. de: Trajectory spaces, generalized functions and unbounded operators, Lecture notes in math., 1162, Springer, 1985.Google Scholar
  481. [A5]
    Antosik, P., Mikusiński, J. and Sikorski, R.: Theory of distributions. The sequential approach, Elsevier, 1973.Google Scholar
  482. [A6]
    Köthe, G.: Topoiogical vector spaces, I, Springer, 1969.Google Scholar
  483. [A7]
    Horvath, J.: Topoiogical vector spaces and distributions, Addison-Wesley, 1966.Google Scholar
  484. [A8]
    Rudin, W.: Functional analysis, McGraw-Hill, 1974.Google Scholar
  485. [1]
    Kurosh, A.G.: The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).Google Scholar
  486. [2]
    Kurosh, A.G. and Chernikov, S.N.: ‘Solvable and nilpotent groups’, Uspekhi Mat. Nauk 2, no. 3 (1947), 18–59 (in Russian).Google Scholar
  487. [A1]
    Robinson, D.J.S.: Finiteness conditions and generalized soluble groups, Springer, 1972.Google Scholar
  488. [A2]
    Robinson, D.J.S.: A course in the theory of groups, Springer, 1980.Google Scholar
  489. [1]
    Kelley, J.L.: General topology, v. Nostrand, 1955.Google Scholar
  490. [2]
    Reid, M. and Simon, B.: Methods of modern mathematical physics, 1. Functional analysis, Acad. Press, 1972.Google Scholar
  491. [3]
    Moore, E.H. and Smith, H.L.: ‘A general theory of limits’, Amer. J. Math. 44 (1922), 102–121.MathSciNetMATHGoogle Scholar
  492. [1]
    Sobolev, S.L.: ‘Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales’, Mat. Sb. 1, no. 1 (1936), 39–72.MathSciNetMATHGoogle Scholar
  493. [2]
    Sobolev, S.L.: Applications of functional analysis in mathematical physics, Amer. Math. Soc., 1963 (translated from the Russian).Google Scholar
  494. [3]
    Schwartz, L.: Théorie des distributions, 1–2, Hermann, 1950–1951.Google Scholar
  495. [4]
    Gel’fand, I.M. and Shilov, G.E.: Some problems in differential equations, Moscow, 1958 (in Russian).Google Scholar
  496. [5]
    Hörmander, L.: The analysis of linear partial differential operators, 1–4, Springer, 1983–1985.Google Scholar
  497. [6]
    Komatsu, H. (ed.): Hyperfunctions and pseudo-differential equations, Lecture notes in math., 287, Springer, 1973.Google Scholar
  498. [7]
    Vladimirov, V.S.: Equations of mathematical physics, M. Dekker, 1971 (translated from the Russian).Google Scholar
  499. [8]
    Vladimirov, V.S.: Generalized functions in mathematical physics, Mir, 1979 (translated from the Russian).Google Scholar
  500. [9]
    Euler, L.: ‘Institutionum calculi integralis’, in Opera Omnia; series prima; opera math., Vol. 11–13, Teubner, 1913–1914.Google Scholar
  501. [1]
    Kurosh, A.G.: The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).Google Scholar
  502. [2]
    Kurosh, A.G. and Chernikov, S.N.: ‘Solvable and nilpotent groups’, Uspekhi Mat. Nauk 2, no. 3 (1947), 18–59 (in Russian).Google Scholar
  503. [1]
    Szegö, G.: Orthogonal polynomials, Amer. Math. Soc., 1975.Google Scholar
  504. [2]
    Suetin, P.K.: Classical orthogonal polynomials, Moscow, 1979 (in Russian).Google Scholar
  505. [3]
    Feller, W.: An introduction to probability theory and its applications, 1–2, Wiley, 1957–1971.Google Scholar
  506. [1]
    Hille, E. and Phillips, R.: Functional analysis and semigroups, Amer. Math. Soc., 1957.Google Scholar
  507. [2]
    Zabreĭko, P.P. and Zafievskiĭ, A.V.: ‘On a certain class of semigroups’, Soviet Math. Dokl 10, no. 6 (1969), 1523–1526. (Dokl. Akad Nauk 189, no. 5 (1969), 934-937)Google Scholar
  508. [3]
    Zafievskiĭ, A.V.: ‘On semigroups with singularities summable with a power-weight at zero’, Soviet Math. Dokl. 11, no. 6 (1970), 1408–1411. (Dokl. Akad Nauk 195, no. 1 (1970), 24-27)Google Scholar
  509. [A1]
    Kreĭn, S.G.: Linear differential equations in Banach space, Amer. Math. Soc., 1971 (translated from the Russian).Google Scholar
  510. [A2]
    Pazy, A.: Semigroups of linear operators and applications to partial differential equations, Springer, 1983.Google Scholar
  511. [A1]
    Kunen, K.: Set theory, North-Holland, 1980.Google Scholar
  512. [A2]
    Barwise, J. (ed.): Handbook of mathematical logic, North-Holland, 1977.Google Scholar
  513. [A3]
    Griffiths, Ph. and Harris, J.: Principles of algebraic geometry, Wiley, 1978, p. 20 ff.Google Scholar
  514. [A4]
    Hartshorne, R.: Algebraic geometry, Springer, 1977, p. 272.Google Scholar
  515. [A1]
    Bernstein, S.: ‘Principe de stationarité et généralisation de la loi de Mendel’, C.R. Acad Sci. Paris 177 (1923), 581–584.Google Scholar
  516. [A2]
    Etherington, I.M.H.: ‘Genetic algebras’, Proc. R. Soc. Edinburgh 59 (1939), 242–258.MathSciNetGoogle Scholar
  517. [A3]
    Gonshor, H.: ‘Contributions to genetic algebras’, Proc. Edinburgh Math. Soc. (2) 17 (1971), 289–298.MathSciNetMATHGoogle Scholar
  518. [A4]
    Holgate, P.: ‘Characterizations of genetic algebras’, J. London Math. Soc. (2) 6 (1972), 169–174.MathSciNetMATHGoogle Scholar
  519. [A5]
    Schafer, R.D.: ‘Structure of genetic algebras’, Amer. J. Math. 71 (1949), 121–135.MathSciNetMATHGoogle Scholar
  520. [A6]
    Walcher, S.: ‘Bernstein algebras which are Jordan algebras’, Arch. Math. 50 (1988), 218–222.MathSciNetMATHGoogle Scholar
  521. [A7]
    Wörz-Busekros, A.: Algebras in genetics, Lecture notes in biomath., 36, Springer, 1980.Google Scholar
  522. [1]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  523. [2]
    Gentzen, G.: ‘Untersuchungen über das logische Schliessen’, Math. Z 39 (1934), 176–210; 405-431.MathSciNetGoogle Scholar
  524. [3]
    Curry, H.B.: Foundations of mathematical logic, McGraw-Hill, 1963.Google Scholar
  525. [4]
    Prawitz, D.: ‘Ideas and results in proof theory’, in J.E. Fenstad (ed.): Proc. 2-nd Scand. Logic Symp., North-Holland, 1971, pp. 235-308.Google Scholar
  526. [1]
    Shafarevich, I.R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).Google Scholar
  527. [2]
    Hartshorne, R.: Algebraic geometry, Springer, 1978.Google Scholar
  528. [A1]
    Springer, G.: Introduction to Riemann surfaces, Addison-Wesley, 1957.Google Scholar
  529. [A2]
    Griffiths, P.A. and Harris, J.E.: Principles of algebraic geometry, Wiley, 1978.Google Scholar
  530. [1]
    Shafarevich, I.R., et al.: ‘Algebraic surfaces’, Proc. Steklov Inst. Math. 75 (1967). (Trudy Mat. Inst. Steklov. 75 (1965))Google Scholar
  531. [A1]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.Google Scholar
  532. [A2]
    Barth, W., Peters, C. and Ven, A. van de: Compact complex surfaces, Springer, 1984.Google Scholar
  533. [A3]
    Griffiths, P.A. and Harris, J.E.: Principles of algebraic geometry, Wiley, 1978.Google Scholar
  534. [1]
    Platonov, V.P.: ‘On the genus problem in arithmetic subgroups’, Soviet Math. Dokl. 12, no. 5 (1971), 1503-1507. (Dokl. Akad. Nauk SSSR 200, no. 4 (1971), 793-796)Google Scholar
  535. [2]
    Platonov, V.P. and Matveev, G.V.: ‘Abelian groups and the finite approximability of linear groups with respect to conjugacy’, Dokl. Akad Nauk Bel.SSR 14, no. 9 (1970), 777-779 (in Russian).Google Scholar
  536. [3]
    Rapinchuk, A.S.: ‘Platonov’s conjecture on the genus in arithmetic groups’, Dokl. Akad Nauk Bel.SSR 25, no. 2 (1981), 101-104; 187 (in Russian). English summary.Google Scholar
  537. [1]
    Levin, B.Ya.: Distributions of zeros of entire functions, Amer. Math. Soc., 1964 (translated from the Russian)Google Scholar
  538. [A1]
    Boas, R.P., Jr.: Entire functions, Acad. Press, 1954.Google Scholar
  539. [A1]
    Williams, P.J.: Pipelines and permafrost physical geography and development in the circumpolar north, Longman, 1979.Google Scholar
  540. [A2]
    Fasano, A. and Primicerio, M.: ‘Freezing of porous media: a review of mathematical models’, in V. Boffi and H. Neunzert (eds.): Proc. German-Italian Symp. Applic. Math, in Technology, Teubner, 1984, pp. 288-311.Google Scholar
  541. [1]
    Bugaro, Yu.D. and Stratilatova, M.B.: ‘Circumferences on a surface’, Proc. Steklov Inst. Math. 76 (1965), 109–141. (Trudy Mat. Inst. Steklov. 76 (1965), 88-114)Google Scholar
  542. [2]
    Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. Affine Differentialgeometrie, 2, Springer, 1923.Google Scholar
  543. [A1]
    Nomizu, K. and Yano, K.: ‘On circles and spheres in Riemannian geometry’, Math. Ann. 210 (1974), 163–170.MathSciNetMATHGoogle Scholar
  544. [A2]
    Berger, M. and Gostiaux, B.: Differential geometry: manifolds, curves and surfaces, Springer, 1988 (translated from the French).Google Scholar
  545. [A3]
    Chen, B.Y.: Geometry of submanifolds, M. Dekker, 1973.Google Scholar
  546. [A1]
    Berger, M. and Gostiaux, B.: Differential geometry: manifolds, curves and surfaces, Springer, 1988 (translated from the French).Google Scholar
  547. [A2]
    Sternberg, S.: Lectures on differential geometry, Prentice-Hall, 1964.Google Scholar
  548. [A3]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).Google Scholar
  549. [A1]
    Do Carmo, M.: Differential geometry of curves and surfaces, Prentice Hall, 1976.Google Scholar
  550. [A2]
    Berger, M. and Gostiaux, B.: Differential geometry, Springer, 1988 (translated from the French).Google Scholar
  551. [A3]
    O’Neill, B.: Elementary differential geometry, Acad. Press, 1966.Google Scholar
  552. [A4]
    Blaschke, W. and Leichtweiss, K.: Elementare Differentialgeometrie, Springer, 1973.Google Scholar
  553. [A5]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 1, Wiley (Interscience), 1963.Google Scholar
  554. [A1]
    Busemann, H.: The geometry of geodesics, Acad. Press, 1955.Google Scholar
  555. [A2]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).Google Scholar
  556. [A1]
    Anosov, D.V.: ‘Geodesic flows on compact Riemannian manifolds of negative curvature’, Proc. Steklov Inst.Math. 90 (1969). (Trudy Mat Inst. Steklov. 90 (1969))Google Scholar
  557. [A2]
    Arnold, V.I.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).Google Scholar
  558. [A3]
    Klingenberg, W.: Riemannian geometry, Springer, 1982 (translated from the German).Google Scholar
  559. [1]
    Busemann, H.: The geometry of geodesics, Acad. Press, 1955.Google Scholar
  560. [A1]
    Gromov, M.: Structures métriques pour les variétés Riemanniennes, F. Nathan, 1981.Google Scholar
  561. [1]
    Fock, VA. [VA. Fok]: The theory of space, time and gravitation, Macmillan, 1954 (translated from the Russian).Google Scholar
  562. [2]
    Synge, J.L.: Relativity: the general theory, North-Holland & Interscience, 1960.Google Scholar
  563. [3]
    Infeld, L. and Hoffmann, B.: ‘Gravitational equations and problems of motion’, Ann. of Math. 39 (1938), 65–100.MathSciNetGoogle Scholar
  564. [A1]
    Infeld, L. and Plebański, J.: Motion and relativity, Pergamon & Polish Acad. Sci., 1960.Google Scholar
  565. [1]
    Rashewski, P.K. [P.K. Rashevskiĭ]: Riemannsche Geometrie und Tensoranalyse, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  566. [2]
    Lang, S.: Introduction to differentiable manifolds, Interscience, 1967.Google Scholar
  567. [3]
    Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Acad. Press, 1978Google Scholar
  568. [4]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grossen, Springer, 1968.Google Scholar
  569. [5]
    Synge, J.L.: Relativity: The general theory, North-Holland & Interscience, 1960.Google Scholar
  570. [6]
    Schnirelmann, L.G. [L.G. Shnirel’man]: Méthode topologiques dans les problèmes variationelles, Hermann, 1934 (translated from the Russian).Google Scholar
  571. [7]
    Milnor, J.: Morse theory, Princeton Univ. Press, 1963.Google Scholar
  572. [8]
    Aleksandrov, A.D.: Die innere Geometrie der konvexen Flächen, Akademie-Verlag, 1955 (translated from the Russian).Google Scholar
  573. [A1]
    Klingenberg, W.: Lectures on closed geodesics, Springer, 1978 (translated from the German).Google Scholar
  574. [A2]
    Busemann, H.: The geometry of geodesics, Acad. Press, 1955.Google Scholar
  575. [A3]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).Google Scholar
  576. [A4]
    Berger, M. and Gostiaux, B.: Differential geometry: manifolds, curves and surfaces, Springer, 1988 (translated from the French).Google Scholar
  577. [A5]
    O’Neill, B.: Semi-Riemannian geometry (with applications to relativity), Acad. Press, 1983.Google Scholar
  578. [A1]
    Klingenberg, W.: Riemannian geometry, Springer, 1982 (translated from the German).Google Scholar
  579. [1]
    Schouten, J.A.: Ricci-calculus, Springer, 1954 (translated from the German).Google Scholar
  580. [2]
    Pogorelov, A.V.: Hilbert’s fourth problem, Winston & Wiley, 1979 (translated from the Russian).Google Scholar
  581. [1]
    Cohn-Vossen, S.E.: ‘Kürzeste Wege und Totalkrümmung auf Flächen’, Compos. Math. 2 (1935), 69–133.MathSciNetGoogle Scholar
  582. [A1]
    Cheeger, J. and Ebin, D.: Comparison theorems in Riemannian geometry, North-Holland, 1975.Google Scholar
  583. [A1]
    Berger, M. and Gostiaux, B.: Differential geometry: manifolds, curves and surfaces, Springer, 1988, p. 395 (translated from the French).Google Scholar
  584. [A2]
    Do Carmo, M: Differential geometry of curves and surfaces, Prentice Hall, 1976, p. 153; 261.Google Scholar
  585. [A3]
    Spivak, M.: Differential geometry, 3, Publish or Perish, 1979.Google Scholar
  586. [1]
    Gauss, C.F.: Allgemeine Flächentheorie, W. Engelmann, Leipzig, 1900 (translated from the Latin).Google Scholar
  587. [2]
    Aleksandrov, A.D. and Zalgaller, V.A.: Intrinsic geometry of surfaces, Amer. Math. Soc., 1967 (translated from the Russian).Google Scholar
  588. [3]
    Aleksandrov, A.D.: ‘A theorem on triangles in a metric space and some of its applications’, Trudy Mat. Inst. Steklov. 38 (1951), 5–23. (in Russian).MATHGoogle Scholar
  589. [4]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grossen, Springer, 1968.Google Scholar
  590. [A1]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).Google Scholar
  591. [A2]
    Cheeger, J. and Ebin, D.: Comparison theorems in Riemannian geometry, North-Holland, 1975.Google Scholar
  592. [A3]
    Cheeger, J., Müller, W. and Schrader, R.: ‘On the curvature of piecewise flat spaces’, Comm. Math. Physics 92 (1984), 405–454.MATHGoogle Scholar
  593. [1]
    Bock, Y., et al.: ‘A demonstration of 1–2 parts in 107 accuracy using GPS’, Bulletin Géodésique 60 (1986), 241–254.Google Scholar
  594. [2]
    Möhle, A.: Die Verwendung von geographischen Koordinaten in der Theorie allgemeiner Flächen, Friedrich-Wilhelm Univ. Bonn, 1934. Dissertation.Google Scholar
  595. [3]
    Molodenskiĭ, M.S., Eremeev, V.F. and Yurkina, M.I.: Methods for study of the external gravitational field and figure of the Earth, Israel Program Sci. Transl., 1962 (translated from the Russian).Google Scholar
  596. [4]
    Moritz, H.: Advanced physical geodesy, H. Wichmann, Karlsruhe, 1980.Google Scholar
  597. [5]
    Senus, W.J.: ‘NAVSTAR Global Positioning System: status’, in The future of terrestrial and space methods for positioning. Proc. Internat. Assoc. Geodesy and Geophysics. XVIII General Assembly. Hamburg, August 15–27, Ohio State Univ., 1983, pp. 181-445.Google Scholar
  598. [6]
    Vaniček and Krakiwsky, E.J.: Geodesy: the concepts, North-Holland, 1982.Google Scholar
  599. [A1]
    Jeffreys, H.: The Earth, its origin, history and physical constitution, Cambridge Univ. Press, 1970.Google Scholar
  600. [1]
    Friedlander, F.G.: Sound pulses, Cambridge Univ. Press, 1958.Google Scholar
  601. [2]
    Babich, V.M. and Buldyrev, V.S.: Asymptotic methods in the diffraction of short waves, Moscow, 1972 (in Russian).Google Scholar
  602. [A1]
    Kline, M. and Kay, I.W.: Electromagnetic theory and geometrical optics, Interscience, 1965.Google Scholar
  603. [A2]
    Felsen, L.B. and Marcuvitz, N.: Radiation and scattering of waves, Prentice-Hall, 1973, Sect. 1.7.Google Scholar
  604. [A1]
    Munkres, J.R.: Elements of algebraic topology, Addison-Wesley, 1984.Google Scholar
  605. [A2]
    Spanier, E.: Algebraic topology, McGraw-Hill, 1966.Google Scholar
  606. [A3]
    Grünbaum, B.: Convex polytopes, Interscience, 1967.Google Scholar
  607. [A4]
    Grünbaum, B.: ‘Polytopes, graphs and complexes’, Bull. Amer. Math. Soc. 76 (1970), 1131–1201.MathSciNetMATHGoogle Scholar
  608. [1]
    Adler, A.: Theorie der geometrischen Konstruktionen, Göschen, 1906.Google Scholar
  609. [2]
    Hilbert, D.: Grundlagen der Geometrie, Springer, 1913.Google Scholar
  610. [3]
    Enzyklopaedie der Elementarmathematik, Deutsch. Verlag Wissenschaft., 1969 (translated from the Russian).Google Scholar
  611. [A1]
    Bieberbach, L.: Theorie der geometrischen Konstruktionen, Birkhäuser, 1952.Google Scholar
  612. [A2]
    Mehlhorn, K.: Multidimensional searching and computational geometry, Springer, 1984.Google Scholar
  613. [A3]
    Edelsbrunner, H.: Algorithms in combinatorial geometry, Springer, 1987.Google Scholar
  614. [1]
    Baldassarri, M.: Algebraic varieties, Springer, 1956.Google Scholar
  615. [2]
    Shafarevich, I.R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).Google Scholar
  616. [A1]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.Google Scholar
  617. [A1]
    Coxeter, H.S.M.: Introduction to geometry, Wiley, 1961.Google Scholar
  618. [A2]
    Hilbert, D. and Cohn-Vossen, S.: Anschauliche Geometrie, Springer, 1932.Google Scholar
  619. [1]
    Veblen, O. and Whitehead, G.: The foundations of differential geometry Cambridge Univ. Press, 1932.Google Scholar
  620. [2]
    Laptev, G.F.: ‘Differential geometry of imbedded manifolds’, Trudy Moskov. Mat. Obshch. 2 (1953), 275–382 (in Russian).MathSciNetMATHGoogle Scholar
  621. [A1]
    Schouten, J.A.: Ricci-calculus, Springer, 1954 (translated from the German).Google Scholar
  622. [A2]
    Kobayashi, S.: Transformation groups in differential geometry, Springer, 1972.Google Scholar
  623. [1]
    Kendall, M.G. and Moran, P.A.P.: Geometric probability, Griffin, 1963.Google Scholar
  624. [2]
    Kendall, D.G. and Harding, E.F.: Stochastic geometry, Wiley, 1974.Google Scholar
  625. [A1]
    Stoyan, D., Kendall, W.S. and Mecke, J.: Stochastic geometry and its applications, Wiley, 1987.Google Scholar
  626. [A2]
    Ambartzumian, R.V. (ed.): Stochastic and integral geometry, Reidel, 1987.Google Scholar
  627. [A3]
    Matheron, G.: Random sets and integral geometry, Wiley, 1975.Google Scholar
  628. [1]
    Zariski, O. and Samuel, P.: Commutative algebra, 1, Springer, 1975.Google Scholar
  629. [2]
    Chevalley, C.: ‘Intersection of algebraic and algebroid varieties’, Trans. Amer. Math. Soc. 57 (1945), 1–85.MathSciNetMATHGoogle Scholar
  630. [3]
    Samuel, P.: Algèbre locale, Gauthier-Villars, 1953.Google Scholar
  631. [4]
    Nagata, M.: Local rings, Interscience, 1962.Google Scholar
  632. [5]
    Grothendieck, A.: ‘Eléments de géométrie algébrique IV. Etude locale des schémas et des morphismes des schémas’, Publ. Math. IHES, no. 32 (1967).Google Scholar
  633. [1]
    Rainich, G.Y.: ‘Electrodynamics in general relativity theory’, Trans. Amer. Math. Soc. 27 (1925), 106–136.MathSciNetMATHGoogle Scholar
  634. [2]
    Wheeler, J.A.: Geometrodynamics, Acad. Press, 1962.Google Scholar
  635. [3]
    Harrison, B.K., Thorne, K.S., Wakano, M. and Wheeler, J.A.: Gravitational theory and gravitational collapse, Univ. Chicago Press, 1965.Google Scholar
  636. [4]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics, 2. Structure and evolution of the universe, Chicago, 1983 (translated from the Russian).Google Scholar
  637. [A1]
    Wheeler, J.A.:’ some implications of general relativity for the structure and evolution of the universe’, in XI Conseil de Physique Solvay. Bruxelles, 1958, pp. 97-148.Google Scholar
  638. [1]
    Aleksandrov, A.D.: ‘Geometry’, in Large Soviet Encyclopedia, Vol. 6.Google Scholar
  639. [2A]
    Aleksandrov, A.D.: ‘A general view of mathematics’, in A.D. Aleksandrov, A.N. Kolmogorov and M.A. Lavrent’ev (eds.): Mathematics, its content, methods, and meaning, Vol. 1, M.I.T., 1969, pp. 1-64 (translated from the Russian).Google Scholar
  640. [2B]
    Delone, B.N.: ‘Analytic geometry’, in A.D. Aleksandrov, A.N. Kolmogorov and M.A. Lavrent’ev (eds.): Mathematics, its content, methods, and meaning, Vol. 1, M.I.T., 1969, pp. 183-260 (translated from the Russian).Google Scholar
  641. [2C]
    Aleksandrov, A.D.: ‘Non-euclidean geometry’, in A.D. Aleksandrov, A.N. Kolmogorov and M.A. Lavrent’ev (eds.): Mathematics, its content, methods, and meaning, Vol. 2, M.I.T., 1969, pp. 97-189 (translated from the Russian).Google Scholar
  642. [3]
    Waerden, B.L. van der: Science awakening, Noordhoff, 1975. Translated from the Dutch.Google Scholar
  643. [4]
    Wieleitner, H.: Geschichte der Mathematik, de Gruyter, 1923.Google Scholar
  644. [5]
    Klein, F.: Development of mathematics in the 19th century, Math. Sci. Press, 1979 (translated from the German).Google Scholar
  645. [6]
    Struik, D.J.: A concise history of mathematics, Bell, 1954. Translated from the Dutch.Google Scholar
  646. [7]
    Hilbert, D.: Grundlagen der Geometrie, Springer, 1913.Google Scholar
  647. [8]
    On the foundation of geometry, Moscow, 1956 (in Russian). Collection of translations.Google Scholar
  648. [9]
    Efimov, N.V.: Höhere Geometrie, Deutsch. Verlag Wissenschaft., 1960 (translated from the Russian).Google Scholar
  649. [10]
    Klein, F.: Vorlesungen über höhere Geometrie, Springer, 1926.Google Scholar
  650. See also the references to individual geometric disciplines.Google Scholar
  651. [A1]
    Bonola, R.: Non-Euclidean geometry, Dover, reprint, 1955 (translated from the Italian).Google Scholar
  652. [A2]
    Hilbert, D. and Cohn-Vossen, S.: Anschauliche Geometrie, Springer, 1933.Google Scholar
  653. [A3]
    Tölke, J. and Wills, J.M. (eds.): Contributions to geometry, Birkhäuser, 1979.Google Scholar
  654. [A4]
    Gruber, P. and Wills, J.M. (eds.): Convexity and its applications, Birkhäuser, 1983.Google Scholar
  655. [A5]
    Davis, C, Grünbaum, B. and Sherk, F.A. (eds.): The geometric vein (Coxeter-Festschrift), Springer, 1980.Google Scholar
  656. [A6]
    Coxeter, H.S.M.: Unvergängliche Geometrie, Birkhäuser, 1963.Google Scholar
  657. [A7]
    Dubrovin, B., Novikov, S. and Fomenko, A.: Modern geometry, Springer, 1984 (translated from the Russian).Google Scholar
  658. [A8]
    Greenberg, M: Euclidean and non-Euclidean geometries, Freeman, 1974.Google Scholar
  659. [A9]
    Berger, M.: Geometry, 1–2, Springer, 1987 (translated from the French).Google Scholar
  660. [A10]
    Coxeter, H.S.M.: Introduction to geometry, Wiley, 1963.Google Scholar
  661. [A11]
    Boyer, C.B.: History of analytic geometry, Scripta Math., 1956.Google Scholar
  662. [A12]
    Chasles, M.: Aperçu historique sur l’origine et le développment des méthodes en géométrie, Gauthier-Villars, 1889.Google Scholar
  663. [A13]
    Coolidge, J.L.: A history of geometrical methods, Oxford Univ. Press, 1947.Google Scholar
  664. [A14]
    Heath, Th.L.: A manual of greek mathematics, Dover, 1963.Google Scholar
  665. [A15]
    Klein, F.: Vorlesungen über höhere Geometrie, Springer, 1926.Google Scholar
  666. [A16]
    Loria, G.: Storia della geometria descrittiva, U. Hoepli, 1921.Google Scholar
  667. [A17]
    Russell, B.: An essay on the foundations of geometry, Dover, reprint, 1956.Google Scholar
  668. [A18]
    Waerden, B.L. van der: Geometry and algebra in ancient civilizations, Springer, 1983.Google Scholar
  669. [A19]
    Kline, M: Mathematical thougt from ancient to modern times, Oxford Univ. Press, 1972.Google Scholar
  670. [1]
    Cohn-Vossen, S.E.: Some problems of differential geometry in the large, Moscow, 1959 (in Russian).Google Scholar
  671. [2]
    Aleksandrov, A.D.: Die innere Geometrie der konvexen Flächen, Akademie-Verlag, 1955 (translated from the Russian).Google Scholar
  672. [3]
    Efimov, N.V.: ‘Geometry’ in the large’’, in Mathematics in the USSR during 40 years: 19171957, Vol. 1, Moscow, 1959 (in Russian).Google Scholar
  673. [4]
    Pogorelov, A.V.: Extrinsic geometry of convex surfaces, Amer. Math. Soc., 1973 (translated from the Russian).Google Scholar
  674. [5]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grossen, Springer, 1968.Google Scholar
  675. [A1]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).Google Scholar
  676. [A2]
    Cheeger, J. and Ebin, D.: Comparison theorems in Riemannian geometry, North-Holland, 1975.Google Scholar
  677. [A3]
    Yau, S.T.: ‘Problem section’, in Seminar on differential geometry, Ann. of Math. Studies, Vol. 102, Princeton Univ. Press, 1982, pp. 669-706.Google Scholar
  678. [A4]
    Milnor, J.: Morse theory, Princeton Univ. Press, 1963.Google Scholar
  679. [1]
    Eisenhart, L.P.: Riemannian geometry, Princeton Univ. Press, 1949.Google Scholar
  680. [2]
    Chen, B.: Geometry of submanifolds, M. Dekker, 1973.Google Scholar
  681. [3]
    Chern, S.-S. and Lashof, R.K.: ‘On the total curvature of immersed manifolds’, Amer. J. Math. 79 (1957), 306–318.MathSciNetMATHGoogle Scholar
  682. [4]
    Shefel’, S.Z.: ‘Two classes of k-dimensional surfaces in n-dimensional Euclidean space’, Sib. Math. J. 10 (1969), 328–333. (Sibirsk. Mat. Zh. 10, no. 2 (1969), 459-466)MATHGoogle Scholar
  683. [5]
    Glazyrin, V.V.: ‘Topological and metric properties of k-saddle surfaces’, Soviet Math. Dokl. 18 (1977), 532–534. (Dokl. Akad. Nauk SSSR 233, no. 6 (1977), 1028-1030)MathSciNetMATHGoogle Scholar
  684. [6A]
    Hartman, P.: ‘On isometric immersions in Euclidean space of manifolds with non-negative sectional curvatures’, Trans. Amer. Math. Soc. 115 (1965), 94–109.MathSciNetMATHGoogle Scholar
  685. [6B]
    Hartman, P.: ‘On the isometric immersions in Euclidean space of manifolds with nonnegative sectional curvatures II’, Trans. Amer. Math. Soc. 147 (1970), 529–540.MathSciNetGoogle Scholar
  686. [7]
    Gromov, M.L.: ‘Isometric imbeddings and immersions’, Soviet Math. Dokl. 11 (1970), 794–797. (Dokl. Akad. Nauk SSSR 192, no. 6 (1970), 1206-1209)MATHGoogle Scholar
  687. [8]
    Chern, S.-S. and Kuiper, N.H.: ‘Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space’, Ann. of Math. 56, no. 3 (1952), 422–430.MathSciNetGoogle Scholar
  688. [9]
    Borovskiĭ, Yu.E. and Shefel’, S.Z.: ‘On Chern-Kuiper theorem’, Sib. Math. J. 19 (1978), 978. (Sibirsk. Mat. Zh. 19, no. 6 (1978), 1386-1387)Google Scholar
  689. [10]
    Borisenko, A.A.: ‘Complete l-dimensional surfaces of nonpositive extrinsic curvature in a Riemannian space’, Math. USSR Sb. 33 (1977), 485–499. (Mat. Sb. 104, no. 4 (1977), 559-576)MATHGoogle Scholar
  690. [11]
    Moore, J.D.: ‘Codimension two submanifolds of positive curvature’, Proc. Amer. Math. Soc. 70, no. 1 (1978), 72–74.MathSciNetMATHGoogle Scholar
  691. [12]
    Gardner, R.B.: ‘New viewpoints in the geometry of submanifolds of RNBull. Amer. Math. Soc. 83, no. 1 (1977), 1–35.MathSciNetMATHGoogle Scholar
  692. [A1]
    Gromov, M.: Partial differential relations, Springer, 1986 (translated from the Russian).Google Scholar
  693. [A2]
    Gromov, M. and Rokhlin, V.: ‘Embeddings and immersions in Riemannian geometry’, Russian Math. Surveys 25, no. 5 (1970), 1–57. (Uspekhi Mat. Nauk 25, no. 5 (1970), 3-62)MATHGoogle Scholar
  694. [1]
    Minkowski, H.: Geometrie der Zahlen, Chelsea, reprint, 1953.Google Scholar
  695. [2]
    Minkowski, H.: Diophantische Approximationen, Chelsea, reprint, 1957.Google Scholar
  696. [3]
    Hancock, H.: Development of the Minkowski geometry of numbers, MacMillan, 1939.Google Scholar
  697. [4]
    Cassels, J.W.S.: An introduction to the geometry of numbers, Springer, 1959.Google Scholar
  698. [5]
    Lekkerkerker, C.G. and Gruber, P.M.: Geometry of numbers, North-Holland, 1987. Updated reprint.Google Scholar
  699. [6]
    Fejes Toth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum, Springer, 1972.Google Scholar
  700. [7]
    Rogers, C.A.: Packing and covering, Cambridge Univ. Press, 1964.Google Scholar
  701. [8]
    Keller, O.-H.: ‘Geometrie der Zahlen’, in Enzyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Vol. 12, 1954. Heft 11, Teil III.Google Scholar
  702. [9]
    Hlawka, E.: ‘Grundbegriffe der Geometrie der Zahlen’, Jahresber. Deutsch. Math-Verein 57 (1954), 37–55.MathSciNetMATHGoogle Scholar
  703. [10]
    Baranovskiĭ, E.P.: ‘Packings, coverings, partitionings and certain other distributions in spaces of constant curvature’, Progress Math 9 (1971), 209–253. (Itogi Nauk. Algebra Topol. Geom. 1967 (1969), 189-225)Google Scholar
  704. [11]
    Koksma, J.F.: Diophantische Approximationen, Springer, 1936.Google Scholar
  705. [12]
    Macbeath, A.M. and Rogers, C.A.: ‘Siegel’s mean value theorem in the geometry of numbers’, Proc. Cambridge Philos. Soc. (2) 54 (1958), 139–151.MathSciNetMATHGoogle Scholar
  706. [13]
    Schmidt, W.: ‘On the Minkowski—Hlawka theorem’, Illinois J. Math 7 (1963), 18–23; 714.MathSciNetGoogle Scholar
  707. [14]
    Markov, A.M.: ‘On binary quadratic forms with positive determinant’, Uspekhi Mat. Nauk 3, no. 5 (1948), 7–51 (in Russian).MATHGoogle Scholar
  708. [15]
    Rogers, K. and Swinnerton-Dyer, H.P.F.: ‘The geometry of numbers over algebraic number fields’, Trans. Amer. Math. Soc. 88 (1958), 227–242.MathSciNetMATHGoogle Scholar
  709. [A1]
    Gruber, P.M.: ‘Geometry of numbers’, in J.M. Wills and J. Tölke (eds.): Contributions to geometry, Birkhäuser, 1979, pp. 186-225.Google Scholar
  710. [A2]
    Conway, J.H. and Sloane, N.J.A.: Sphere packing, lattices and groups, Springer, 1987.Google Scholar
  711. [A3]
    Erdös, P., Gruber, P.M. and Hammer, J.: Lattice points, Longman, forthcoming.Google Scholar
  712. [A4]
    Ryskov, S.S.: The geometry of positive quadratic forms, Amer. Math. Soc, 1982.Google Scholar
  713. [A5]
    Malyshev, A.B. and Teterina, Yu.G.: Investigations in number theory, 9, Leningrad, 1986 (in Russian).Google Scholar
  714. [A6]
    Thompson, T.M.: From error-correcting codes through sphere packing to simple groups, Math. Assoc. Amer., 1983.Google Scholar
  715. [A7]
    Fejes Toth, G.: ‘New results in the theory of packing and covering’, in P.M. Gruber and J.M. Wills (eds.): Convexity and its applications, Birkhäuser, 1983, pp. 318-359.Google Scholar
  716. [A8]
    Voronoĭ, G.F.: Collected works, 1–3, Kiev, 1952 (in Russian).Google Scholar
  717. [A9]
    Chalk, J.H.H.: ‘Algebraic lattices’, in P.M. Gruber and J.M. Wills (eds.): Convexity and its applications, Birkhäuser, 1983, pp. 97-110.Google Scholar
  718. [A10]
    Minkowski, H.: Gesammelte Abhandlungen, Teubner, 1911.Google Scholar
  719. [1]
    Fedynskiĭ, V.V.: Geophysical exploration, Moscow, 1964 (in Russian).Google Scholar
  720. [2]
    Malovichko, A.K.: Methods of analytic continuation of anomaly of an attraction force and their applications to problems of gravity, Moscow, 1956 (in Russian).Google Scholar
  721. [3]
    Dmitriev, V.I.: Electromagnetic fields in non-homegeneous media, Moscow, 1969 (in Russian).Google Scholar
  722. [4]
    Questions of the dynamic theory of propagation of seismic waves, 3, Leningrad, 1959 (in Russian).Google Scholar
  723. [5]
    Tikhonov, A.N.: ‘Regularization of incorrectly posed problems’, Soviet Math. Dokl. 4, no. 6 (1963), 1624–1627. (Dokl. Akad. Nauk SSSR 153, no. 1 (1963), 49-52)MATHGoogle Scholar
  724. [6]
    Lavrentiev, M.M. [M.A. Lavrent’ev]: Some improperly posed problems of mathematical physics, Springer, 1967 (translated from the Russian).Google Scholar
  725. [7]
    Tikhonov, A.N.: ‘On the stability of inverse problems’, Dokl. Akad. Nauk SSSR 39, no. 5 (1943), 176–179.MathSciNetMATHGoogle Scholar
  726. [8]
    Tikhonov, A.N. and Arsenine, V.I. [V.I. Arsenin]: Solutions of ill-posed problems, Halted Press, 1977 (translated from the Russian).Google Scholar
  727. [9]
    Tikhonov, A.N. and Goncharskiĭ, A.V. (eds.): Ill-posed problems in the natural sciences, Moscow, 1987 (in Russian).Google Scholar
  728. [A1]
    Morozov, V.A.: Methods for solving incorrectly posed problems, Springer, 1984 (translated from the Russian).Google Scholar
  729. [A2]
    Tarantola, A.: Inverse problem theory. Methods for data fitting and model parameter estimation, Elsevier, 1987.Google Scholar
  730. [A3]
    Weglein, A.B.: ‘The inverse scattering concept and its seismic application’, in A.A. Fitch (ed.): Developments in geophysical exploration, Vol. 6, Elsevier, 1985, pp. 111-138.Google Scholar
  731. [A4]
    Aki, K. and Richards, P.G.: Quantitative seismology, I–II, Freeman, 1980.Google Scholar
  732. [A5]
    Achenbach, J.D.: Wave propagation in elastic solids, North-Holland, 1973.Google Scholar
  733. [A6]
    Hyden, J.H.M.T. van der: Propagation of transient elastic waves in stratified anisotropic media, North-Holland, 1987.Google Scholar
  734. [1]
    Tikhonov, A.N.: Dokl. Akad. Nauk SSSR 1, no. 5 (1935), 294–300.Google Scholar
  735. [2]
    Tikhonov, A.N.: Izv. Akad. Nauk SSSR Otd. Mat. Estestv. Nauk. Ser. Geogr. 3 (1937), 461–479.Google Scholar
  736. [3]
    Tikhonov, A.N.: ‘On boundary conditions containing derivatives of an order higher than the order of the equation’, Mat. Sb. 26 (68), no. 1 (1950), 35–56 (in Russian).Google Scholar
  737. [4]
    Lyubimova, E.A.: Thermics of the Earth and the moon, Moscow, 1968 (in Russian).Google Scholar
  738. [A1]
    Carslaw, H.S. and Jaeger, J.C.: Conduction of heat in solids, Clarendon Press, 1959.Google Scholar
  739. [1]
    Gunning, R.C. and Rossi, H.: Analytic functions of several complex variables, Prentice-Hall, 1965.Google Scholar
  740. [A1]
    Hervé, M.: Several complex variables: local theory, Oxford Univ. Press, 1967.Google Scholar
  741. [1]
    Gibbs, J.W.: Elementary principles in statistical mechanics, Dover, 1960.Google Scholar
  742. [2]
    Huang, K.: Statistical mechanics, Wiley, 1963.Google Scholar
  743. [3]
    Hill, T.L.: Statistical mechanics, McGraw-Hill, 1956.Google Scholar
  744. [A1]
    Ruelle, D.: Statistical mechanics: rigorous results, Benjamin, 1974.Google Scholar
  745. [A2]
    Landau, L.D. and Lifshitz, E.M.: Statistical physics, A course of theoretical physics, 5, Pergamon, 1969 (translated from the Russian).Google Scholar
  746. [1]
    Wilbraham, H.: Cambridge and Dublin Math. J. 3 (1848), 198–201.Google Scholar
  747. [2]
    Gibbs, J.W.: Nature 59 (1898), 200.Google Scholar
  748. [3]
    Zygmund, A.: Trigonometrical series, 1–2, Cambridge Univ. Press, 1988.Google Scholar
  749. [A1]
    Gibbs, J.W.: Nature 59 (1899), 606.Google Scholar
  750. [A2]
    Carslaw, H.S.: Introduction to the theory of Fourier’s series and integrals, Dover, reprint, 1930.Google Scholar
  751. [A1]
    Gibbs, J.W.: Elementary principles in statistical mechanics, Dover, 1960.Google Scholar
  752. [1]
    Kendall, M.G. and Stuart, A.: The advanced theory of statistics. Distribution theory, Griffin, 1969.Google Scholar
  753. [1]
    Giraud, G.: ‘Existence de certaines dérivées des functions de Green; consequences pour les problèmes du type de Dirichlet’, C.R. Acad. Sci. Paris 202 (1936), 380–382.Google Scholar
  754. [2A]
    Giraud, G.: ‘Généralisation des problèmes sur les opérateurs du type elliptique’, Bull. Sci. Math. 56 (1932), 248–272.Google Scholar
  755. [2B]
    Giraud, G.: ‘Généralisation des problèmes sur les opérateurs du type elliptique’, Bull. Sci. Math. 56 (1932), 281–312.Google Scholar
  756. [2C]
    Giraud, G.: ‘Généralisation des problèmes sur les opérateurs du type elliptique’, Bull. Sci. Math. 56 (1932), 316–352.Google Scholar
  757. [3]
    Giraud, G.: ‘Nouvelle méthode pour traité certains problèmes relatifs aux équations du type elliptique’, J. Math. Pures. Appl. 18 (1939), 111–143.MathSciNetGoogle Scholar
  758. [4]
    Miranda, C.: Partial differential equations of elliptic type, Springer, 1970 (translated from the Italian).Google Scholar
  759. [1]
    Cassels, J.W.S. and Fröhlich, A. (eds.): Algebraic number theory, Acad. Press, 1986.Google Scholar
  760. [1]
    Jenkins, J.A.: Univalent functions and conformai mappings, Springer, 1958.Google Scholar
  761. [2]
    Jenkins, J.A.: ‘On the global structure of the trajectories of a positive quadratic differential’, Illinois J. Math. 4, no. 3 (1960), 405–412.MathSciNetMATHGoogle Scholar
  762. [1]
    Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Acad. Press, 1978.Google Scholar
  763. [2]
    Loos, O.: Symmetric spaces, 1–2, Benjamin, 1969.Google Scholar
  764. [A1]
    Grothendieck, A.: Elements de géométrie algébrique /, IHES, 1960, Sect. 0.4.1.7.Google Scholar
  765. [A2]
    Hazewinkel, M.: ‘A tutorial introduction to differentiate manifolds and calculus on differentiate manifolds’, in W. Schiehlen and W. Wedig (eds.): Analysis and estimation of stochastic mechanical systems, Springer (Wien), 1988, pp. 316-340.Google Scholar
  766. [1]
    Aleksandrov, A.D. and Zalgaller, V.A.: ‘Two-dimensional manifolds of bounded curvature’, Proc. Steklov Inst. Math. 76 (1962). (Trudy Mat. Inst. Steklov. 76 (1962))Google Scholar
  767. [2]
    Pogorelov, A.V.: Die Verbiegung konvexer Flächen, Deutsch. Verlag Wissenschaft., 1957 (translated from the Russian).Google Scholar
  768. [1]
    Lavrent’ev, M.A.: ‘Sur une classe de répresentations continues’, Mat. Sb. 42, no. 4 (1935), 407–424.MathSciNetGoogle Scholar
  769. [2]
    Volkovyskiĭ, L.I.: ‘On the problem of the connectedness type of Riemann surfaces’, Mat. Sb. 18, no. 2 (1946), 185–212 (in Russian).Google Scholar
  770. [3]
    Schaeffer, A.C. and Spencer, D.C.: ‘Variational methods in conformal mapping’, Duke Math. J. 14, no. 4 (1947), 949–966.MathSciNetMATHGoogle Scholar
  771. [4]
    Schaeffer, A.C. and Spencer, D.C.: Coefficient regions for schlicht functions, Amer. Math. Soc. Coll. Publ., 35, Amer. Math. Soc., 1950.Google Scholar
  772. [5]
    Goluzin, G.M.: Geometric theory of functions of a complex variable, Amer. Math. Soc., 1969 (translated from the Russian).Google Scholar
  773. [6]
    Belinskiĭ, P.P.: General properties of quasi-conformal mappings, Novosibirsk, 1974, Chapt. 2, Par. 1 (in Russian).Google Scholar
  774. [1]
    Gödel, K.: ‘Ehe Vollständigkeit der Axiomen des logischen Funktionalkalküls’, Monatsh. Math. Physik 37 (1930), 349–360.MATHGoogle Scholar
  775. [2]
    Novicov, P.S.: Elements of mathematical logic, Oliver and Boyd & Acad. Press, 1964 (translated from the Russian).Google Scholar
  776. [3]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  777. [1A]
    Gödel, K.: ‘The consistency of the axiom of choice and of the generalized coninuum hypothesis’, Proc. Nat. Acad Sci. USA 24 (1938), 556–557.Google Scholar
  778. [1B]
    Gödel, K.: ‘Consistency proof for the generalized coninuum hypothesis’, Proc. Nat. Acad Sci. USA 25 (1939), 220–224.Google Scholar
  779. [2]
    Jech, T.J.: Lectures in set theory: with particular emphasis on the method of forcing, Springer, 1971.Google Scholar
  780. [3]
    Mostowski, A.: Constructible sets with applications, North-Holland, 1969.Google Scholar
  781. [4]
    Karp, C.: ‘A proof of the relative consistency of the continuum hypothesis’, in J. Crossley (ed.): Sets, models and recursion theory, North-Holland, 1967, pp. 1-32.Google Scholar
  782. [5]
    Addison, J.W.: ‘Some consequences of the axiom of constructibility’, Fund. Math. 46 (1959), 337–357.MathSciNetMATHGoogle Scholar
  783. [6]
    Novikov, P.S.: ‘On the non-contradictability of certain propositions of descriptive set theory’, Trudy Mat. Inst. Steklov. 38 (1951), 279–316 (in Russian).MATHGoogle Scholar
  784. [7]
    Felgner, U.: Models of ZF-set theory, Springer, 1971.Google Scholar
  785. [A1]
    Devlin, K.J.: Constructibility, Springer, 1984.Google Scholar
  786. [A2]
    Jech, T.: Set theory, Acad. Press, 1978.Google Scholar
  787. [A3]
    Kunen, K.: Set theory. An introduction to independence proofs, North-Holland, 1980.Google Scholar
  788. [A4]
    Gödel, K.: The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory, Princeton Univ. Press, 1940.Google Scholar
  789. [A5]
    Devlin, K.: ‘Constructiblity’, in J. Barwise (ed.): Handbook of mathematical logic, North-Holland, 1977, pp. 453-490.Google Scholar
  790. [1]
    Gödel, K.: ‘Ueber formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I’, Monatsh. Math. Physik 38 (1931), 178–198.Google Scholar
  791. [2]
    Hilbert, D. and Bernays, P.: Grundlagen der Mathematik, 1–2, Springer, 1968–1970.Google Scholar
  792. [3]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  793. [1]
    Gödel, K.: ‘Ueber eine bisher noch nicht benützte Erweiterung des finiten Standpunktes’, Dialectica 12 (1958), 280–287.MathSciNetMATHGoogle Scholar
  794. [A1]
    Bishop, E.: ‘Mathematics as a numerical language’, in A. Kino, J. Myhill and R.E. Vesley (eds.): Intuitionism and Proof Theory, North-Holland, 1970, pp. 53-71.Google Scholar
  795. [A2]
    Troelsta, A.S.: Metamathematical investigations, Springer, 1973, p. 230ff.Google Scholar
  796. [1]
    Vinogradov, I.M.: The method of trigonometric sums in the theory of numbers, Interscience, 1954 (translated from the Russian).Google Scholar
  797. [2]
    Karatsuba, A.A.: Fundamentals of analytic number theory, Moscow, 1975 (in Russian).Google Scholar
  798. [A1]
    Vaughan, R.C.: The Hardy-Littlewood method, Cambridge Univ. Press, 1981.Google Scholar
  799. [A2]
    Halberstam, H. and Richert, H.E.: Sieve methods, Acad. Press, 1974.Google Scholar
  800. [A3]
    Granville, A., Lune, J. van der and Riele, H.J.J. te: ‘Checking the Goldbach conjecture on a vector computer’, in R. Mollin (ed.): Number Theory and Applications. Proc. First Conf. Canadian Number Theory Assoc., Banff, April 1988, Kluwer, 1989. (Also: Mathematical Centre Report NM R8812 (1988)).Google Scholar
  801. [A4]
    Yuan, Wang (ed.): Goldbach conjecture, World Scientific, 1984.Google Scholar
  802. [1]
    Vinogradov, I.M.: The method of trigonometric sums in the theory of numbers, Interscience, 1954 (translated from the Russian).Google Scholar
  803. [2]
    Hua, L.-K.: ‘Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie’, in Enzyklopaedie der Mathematische Wissenschaften mit Einschluss ihrer Anwendungen, Vol. 1, 1959. Heft 13, Teil 1.Google Scholar
  804. [1]
    Golubev, V.V.: Univalent analytic functions with perfect sets of singular points, Moscow, 1916 (in Russian). See also: V.V. Golubev, Single — valued analytic functions. Automorphic functions, Moscow, 1961 (in Russian).Google Scholar
  805. [2]
    Privalov, I.I.: The Cauchy integral, Saratov, 1918 (in Russian).Google Scholar
  806. [3]
    Priwalow, I.I. [I.I. Privalov]: Randeigenschaften analytischer Funktionen, Deutsch. Verlag Wissenschaft., 1956 (translated from the Russian).Google Scholar
  807. [A1]
    Goluzin, G.M.: Geometric theory of functions of a complex variable, Amer. Math. Soc., 1969 (translated from the Russian).Google Scholar
  808. [A1]
    Lint, J.H. van: Introduction to coding theory, Springer, 1982.Google Scholar
  809. [A2]
    Tietäväinen, A.: ‘On the non-existence of perfect codes over finite fields’, SIAM J. Appl. Math. 24 (1973), 88–96.MathSciNetMATHGoogle Scholar
  810. [A3]
    McEliece, R.J., Rodemich, E.R., Rumsey, H. and Welch, L.R.: ‘New upper bounds on the rate of a code via the Delsarte—MacWilliams inequalities’, IEEE Trans. Inform. Theory 23 (1977), 157–166.MathSciNetMATHGoogle Scholar
  811. [A4]
    Tsfasman, M.A., Vladuts, S.G. and Zink, T.: ‘Modular curves, Shimura curves and Goppa codes, better than Varshamov—Gilbert bound’, Math. Nachr. 109 (1982), 21–28.MathSciNetMATHGoogle Scholar
  812. [A5]
    Lekkerkerker, C.G. and Gruber, P.M.: Geometry of numbers, North-Holland, 1987.Google Scholar
  813. [A6]
    Hill, R.: A first course in coding theory, Clarendon Press, 1986.Google Scholar
  814. [A7]
    Lint, J.H. van and Geer, G. van der: Introduction to coding theory and algebraic geometry, Birkhäuser, 1988.Google Scholar
  815. [A8]
    Goppa, V.D.: Geometry and codes, Kluwer, 1988.Google Scholar
  816. [A9]
    Tsfasman, M.A. and Vladuts, S.G.: Algebraic geometric codes, Kluwer, 1989.Google Scholar
  817. [1]
    Gorenstein, D.: ‘An arithmetic theory of adjoint plane curves’, Trans. Amer. Math. Soc. 72 (1952), 414–436.MathSciNetMATHGoogle Scholar
  818. [2]
    Serre, J.-P.: Groupes algébrique et corps des classes, Hermann, 1959.Google Scholar
  819. [3]
    Abramov, L.L. and Golod, E.S.: ‘Homology algebra of the Koszul complex of a local Gorenstein ring’, Math. Notes 9, no. 1 (1971), 30–32. (Mat. Zametki 9, no. 1 (1971), 53-58)Google Scholar
  820. [4]
    Grothendieck, A.: ‘Géométrie formelle et géométrie algébrique’, Sem. Bourbaki 11 (1958–1959).Google Scholar
  821. [5]
    Hartshorne, R.: Local cohomology, a seminar given by A. Grothendieck, Springer, 1967.Google Scholar
  822. [6]
    Hartshorne, R.: Residues and duality, Springer, 1966.Google Scholar
  823. [7]
    Bass, H.: ‘On the ubiquity of Gorenstein rings’, Math. Z. 82 (1963), 8–28.MathSciNetMATHGoogle Scholar
  824. [1]
    Tzitzeica, G.: ‘Sur certaines congruences de droites’, J. Math. Pures Appl. (9) 7 (1928), 189–208.MATHGoogle Scholar
  825. [2]
    Finikov, S.P.: Projective differential geometry, Moscow-Leningrad, 1937 (in Russian).Google Scholar
  826. [A1]
    Bol, G.: Projektive Differential Geometrie, 2, Vandenhoeck & Ruprecht, 1954.Google Scholar
  827. [1]
    Goursat, E.: Cours d’analyse mathématique, 3, Part 1, Gauthier-Villars, 1923.Google Scholar
  828. [2]
    Bitsadze, A.V.: Equations of the mixed type, Pergamon, 1964 (translated from the Russian).Google Scholar
  829. [3]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  830. [4]
    Tricomi, F.G.: Integral equations, Interscience, 1957.Google Scholar
  831. [A1]
    Bourbaki, N.: Algèbre commutative, Hermann, 1961, Chapt. 3. Graduations, filtrations et topologies.Google Scholar
  832. [A2]
    Nastasescu, C. and Oystaeyen, F. van: Graded ring theory, North-Holland, 1982.Google Scholar
  833. [1]
    Cartan, H. and Eilenberg, S.: Homological algebra, Princeton Univ. Press, 1956.Google Scholar
  834. [A1]
    Nâstâsescu, C. and Oystaeyen, F. van: Graded ring theory, North-Holland, 1982.Google Scholar
  835. [1]
    Kochin, N.E.: Vector calculus and initials of tensor calculus, Moscow, 1965.Google Scholar
  836. [2]
    Rashewski, P.K. [P.K. Rashevskiĭ]: Riemannsche Geometrie und Tensoranalyse, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  837. [A1]
    Fleming, W.: Functions of several variables, Addison-Wesley, 1965.Google Scholar
  838. [1]
    Smale, S.: ‘On gradient dynamical systems’, Ann. of Math. (2) 74, no. 1 (1961), 199–206.MathSciNetMATHGoogle Scholar
  839. [A1]
    Dennis, J.E. and Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, 1983.Google Scholar
  840. [A2]
    Fletcher, R.: Practical methods of optimization, Wiley, 1980.Google Scholar
  841. [A3]
    Luenberger, D.G.: Linear and nonlinear programming, Addison-Wesley, 1984.Google Scholar
  842. [1]
    Gram, J.P.: ‘Ueber die Entwicklung reeller Funktionen in Reihen mittelst der Methode der kleinsten Quadraten’, J. Reine Angew. Math. 94 (1883), 41–73.MATHGoogle Scholar
  843. []
    Charlier, C.V.L.: ‘Frequency curves of type A is heterograde statistics’, Ark. Mat. Astr. Fysik 9, no. 25 (1914), 1–17.Google Scholar
  844. [3]
    Mitropol’skiĭ, A.K.: Curves of distributions, Leningrad, 1960 (in Russian).Google Scholar
  845. [A1]
    Cramer, H.: Mathematical methods of statistics, Princeton Univ. Press, 1946, Sect. 17.6.Google Scholar
  846. [1]
    Gram, J.P.: On Raekkeudviklinger bestemmte ved Hjaelp of de mindste Kvadraters Methode, Copenhagen, 1879.Google Scholar
  847. [2]
    Andreev, K.A.: Selected work, Kharkov, 1955 (in Russian).Google Scholar
  848. [3]
    Gantmakher, F.R.: The theory of matrices, Chelsea, reprint, 1977 (translated from the Russian).Google Scholar
  849. [A1]
    Davis, P.J.: Interpolation and approximation, Dover, reprint, 1975.Google Scholar
  850. [A1]
    Schwerdtfeger, H.: Introduction to linear algebra and the theory of matrices, Noordhoff, 1950 (translated from the German).Google Scholar
  851. [1]
    Bar-Hillel, Y., Gaifman, H. and Shamir, E.: ‘Finite-state languages: formal representations and adequacy problems’, Bull. Res. Council Israel 9, sec F, no. 1 (1960), 155–166.MathSciNetGoogle Scholar
  852. [2A]
    Beletskiĭ, M.I.: ‘The relationship between categorical and domination grammars’, Cybernetics 5, no. 4 (1969), 506–512. (Kibernetika (Kiev) 5, no. 4 (1969), 129-135)Google Scholar
  853. [2B]
    Beletskiĭ, M.I.: ‘Relationship between categorical and domination grammars II’, Cybernetics 5, no. 5 (1969), 540–545. (Kibernetika (Kiev) 5, no. 5 (1969), 10-14)Google Scholar
  854. [3]
    Gladkiĭ, A.V.: Formal grammars and languages, Moscow, 1973 (in Russian).Google Scholar
  855. [A1]
    Thomason, R.H. (ed.): Formal philosophy, selected papers from Richard Montague, Yale Univ. Press, 1974.Google Scholar
  856. [A2]
    Benthem, J.F.A.K. van: Essay in logical semantics, Reidel, 1986.Google Scholar
  857. [1]
    Ginsburg, S.: The mathematical theory of context-free languages. McGraw-Hill, 1966.Google Scholar
  858. [A1]
    Hopcroft, J.E. and Ullman, J.D.: Introduction to automata theory, languages and computation, Addison-Wesley, 1979.Google Scholar
  859. [A2]
    Knuth, D.E.: ‘Semantics of context-free languages’, Math. Syst. Theory 2 (1968), 127–145.MathSciNetMATHGoogle Scholar
  860. [A3]
    Aho, A.V. and Ullman, J.D.: The theory of parsing, translation and compiling, 1–2, Prentice-Hall, 1973.Google Scholar
  861. [A4]
    Lewis, H.R. and Papadimitriou, C.H.: Elements of the theory of computation, Prentice-Hall, 1981.Google Scholar
  862. [A5]
    Earley, J.: ‘An effective context-free parsing algorithm’, Commun. ACM 13 (1970), 94–102.MATHGoogle Scholar
  863. [A6]
    Kasami, T.: An effective recognition and syntax algorithm for context-free languages, Report AFCRL-65-758, Air Force Cambridge Research Lab., 1965.Google Scholar
  864. [A7]
    Younger, D.H.: ‘Recognition and parsing context-free languages in time n3’, Inf. and Control 10 (1967), 189–208.MATHGoogle Scholar
  865. [A8]
    Valiant, L.G.: ‘General context-free recognition in less than cubic time’, J. Comput. System Sci. 10 (1975), 308–315.MathSciNetMATHGoogle Scholar
  866. [A9]
    Salomaa, A.: Formal languages, Acad. Press, 1973.Google Scholar
  867. [A1]
    Hopcroft, J.E. and Ulman, J.D.: Introduction to automata theory, languages and computation, Addison-Wesley, 1979.Google Scholar
  868. [A2]
    Lewis, H.R. and Papadimitriou, C.H.: Elements of the theory of computation, Prentice Hall, 1981.Google Scholar
  869. [A3]
    Immerman, N.: ‘Nondetermlnistic space is closed under complementation’, in Proc. 3rd. IEEE Conf. Structure in Complexity Theory. Georgetown June, IEEE, 1988, pp. 112-115.Google Scholar
  870. [A4]
    Szelepcsényi, R.: ‘The method of forcing for nondeterministic automata’, EATCS Bulletin 33 (1987), 96–100.MATHGoogle Scholar
  871. [1]
    Beletskiĭ, M.I.: ‘Context-free and domination grammars and the algorithmic problems connected with them’, Cybernetics 3, no. 4 (1967), 74–80. (Kibernetika (Kiev) 3, no. 4 (1967), 90-97)MathSciNetGoogle Scholar
  872. [2]
    Gladkiĭ, A.V.: Formal grammars and languages, Moscow, 1973 (in Russian).Google Scholar
  873. [A1]
    Melčuk, I. [I.A. Melchuk]: Dependency syntax. Theory and practice, State Univ. New York Press, 1988 (translated from the Russian).Google Scholar
  874. [A1]
    Hopcroft, J.E. and Ullman, J.D.: Introduction to automata theory, languages and computation, Addison-Wesley, 1979.Google Scholar
  875. [1]
    Gross, M. and Lentin, A.: Introduction to formal grammars, Springer, 1970 (translated from the French).Google Scholar
  876. [2]
    Gladkiĭ, A.V.: Formal grammars and languages, Moscow, 1973 (in Russian).Google Scholar
  877. [3]
    Hopcroft, J.E. and Ullman, J.D.: Formal languages and their relation to automata, Addison-Wesley, 1969.Google Scholar
  878. [4]
    Gladkiĭ, A.V. and Dikovskiĭ, A. Ya.: ‘Theory of formal grammars’, J. Soviet Math. 2, no. 5 (1974), 542–564. (Itogi Nauk. i Tekhn. Teor. Veroyatnost. Mat Statist. Teoret. Kibernetika 10 (1972), 107-142)MATHGoogle Scholar
  879. [5]
    Maslov, A.N. and Stotskiĭ, E.D.: ‘Classes of formal grammars’, J. Soviet Math. 6, no. 2 (1976), 189–209. (Itogi Nauk. i Tekhn. Teor. Veroyatnost. Mat. Statist. Teoret. Kibernetika 12 (1975), 156-187)Google Scholar
  880. [6A]
    Stotskiĭ, E.D.: ‘Formal grammars and constraints on derivation’, Problems Inform. Transmission 7, no. 1 (1971), 69–81. (Problemy Peredachi lnformatsiĭ 7, no. 1 (1971), 87-101)Google Scholar
  881. [6B]
    Stotskiĭ, E.D.: ‘Control of the conclusion in formal grammars’, Problems Inform. Transmission 7, no. 3 (1971), 257–270. (Problemy Peredachi Informatsiĭ 7, no. 3 (1971), 87-102)Google Scholar
  882. [A1]
    Salomaa, A.: Formal languages, Acad. Press, 1973.Google Scholar
  883. [A2]
    Hopcroft, J.E. and Ullmann, J.D.: Introduction to automata theory, languages and computation, Addison-Wesley, 1979.Google Scholar
  884. [1]
    Gladkiĭ, A.V.: Formal grammars and languages, Moscow, 1973 (in Russian).Google Scholar
  885. [2]
    Trakhtenbrot, B.A. and Barzdin’, Ya.M.: Finite automata. Behaviour and synthesis, North-Holland, 1973 (translated from the Russian).Google Scholar
  886. [A1]
    Ginsburg, A.: Algebraic theory of automata, Acad. Press, 1968.Google Scholar
  887. [A2]
    Hartmanis, J. and Stearns, R.E.: Algebraic structure theory of sequential machines, Prentice Hall, 1966.Google Scholar
  888. [A3]
    Hopcropt, J.E. and Ullman, J.D.: Introduction to automata theory, languages and computation, Addison-Wesley, 1979.Google Scholar
  889. [A4]
    Ginsburg, S.: The mathematical theory of context-free languages, McGraw-Hill, 1966.Google Scholar
  890. [A5]
    Salomaa, A.: Formal languages, Acad. Press, 1975.Google Scholar
  891. [1]
    Chomsky, N.: News in linguistics, 1962, pp. 412-527 (in Russian).Google Scholar
  892. [2]
    Ginsburg, S. and Partee, B.: ‘A mathematical model of transformational grammars’, Inform. and Control 15 (1969), 297–334.MathSciNetMATHGoogle Scholar
  893. [3]
    Gladkiĭ, A.V. and Mel’chuk, I.A.: Informational questions of semiotics, linguistics and automatic translation, Moscow, 1971, pp. 16-41 (in Russian).Google Scholar
  894. [A1]
    Peters, P.S. and Ritchie, R.W.: ‘On the generative power of transformational grammars’, Information Sciences 6 (1973), 49–83.MathSciNetMATHGoogle Scholar
  895. [A2]
    Chomsky, N.: Aspects of the theory of syntax, M.I.T., 1965.Google Scholar
  896. [A3]
    Chomsky, N.: Lectures on gouvernment and binding, Foris, Dordrecht, 1981.Google Scholar
  897. [A4]
    Bach, E.: An introduction to transformational grammars, Holt, Rinehart, Winston, 1964.Google Scholar
  898. [1]
    Berge, C.: The theory of graphs and their applications, Wiley, 1962 (translated from the French).Google Scholar
  899. [2]
    Ore, O.: Theory of graphs, Amer. Math. Soc., 1962.Google Scholar
  900. [3]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  901. [4]
    Harary, F.: Graph theory, Addison-Welsey, 1969.Google Scholar
  902. [A1]
    Berge, C.: Graphs and hypergraphs, North-Holland, 1973 (translated from the French).Google Scholar
  903. [A2]
    Bondy, J.A. and Murthy, U.S.R.: Graph theory with applications, Macmillan, 1976.Google Scholar
  904. [A3]
    Tutte, W.T.: Graph theory, Addison-Wesley, 1984.Google Scholar
  905. [A4]
    Behzad, M., Chartrand, G. and Foster, L.L.: Graphs and digraphs, Prindle, Weber & Schmidt, 1979.Google Scholar
  906. [A5]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  907. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  908. [A1]
    Biggs, N.: Algebraic graph theory, Cambridge Univ. Press, 1974.Google Scholar
  909. [A2]
    Biggs, N.: Finite groups of automorphisms, Cambridge Univ. Press, 1971.Google Scholar
  910. [A3]
    Frucht, R.: ‘Herstellung von.Graphen mit vorgegebener abstrakter Gruppe’, Compos. Math. 6 (1938), 239–250.MathSciNetGoogle Scholar
  911. [1]
    Ore, O.: Theory of graphs, Amer. Math. Soc., 1962.Google Scholar
  912. [A1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  913. [A2]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  914. [1]
    Harary, A.F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  915. [2]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  916. [A1]
    Lesniak, L. and Oellerman, O.R.: ‘An eulerian exposition’, J. Graph Theory 10 (1986), 277–297.MathSciNetMATHGoogle Scholar
  917. [A2]
    Bermond, J.C.: ‘Hamiltonian graphs’, in L.W. Beineke and R.J. Wilson (eds.): Selected Topics in Graph Theory, Acad Press, Chapt. 6.Google Scholar
  918. [A3]
    Walther, H.-J.: Ten applications of graph theory, Reidel, 1984.Google Scholar
  919. [A4]
    Chen, W.K.: Applied graph theory, North-Holland, 1971.Google Scholar
  920. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  921. [2]
    Ore, O.: Theory of graphs, Amer. Math. Soc., 1962.Google Scholar
  922. [3]
    Shannon, C.E.: ‘A theorem on colouring the lines of a network’, J. Math. Phys. 28 (1949), 148–151.MathSciNetMATHGoogle Scholar
  923. [A1]
    Fiorini, S. and Wilson, R.J.: Edge-colourings of graphs, Pitman, 1977.Google Scholar
  924. [A2]
    Fiorini, S. and Wilson, R.J.: ‘Edge-colourings of graphs’, in L.W. Beineke and R.J. Wilson (eds.): Selected Topics in Graph Theory, Acad. Press, 1978, Chapt. 5.Google Scholar
  925. [A3]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  926. [A4]
    Read, R.C.: ‘An introduction to chromatic polynomials’, J. Comb. Theory 4 (1968), 52–71.MathSciNetGoogle Scholar
  927. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  928. [2]
    Ford, I. and Fulkerson, D.: Flows in networks, Princeton Univ. Press, 1962.Google Scholar
  929. [A1]
    Tutte, W.T.: Connectivity in graphs, Oxford Univ. Press, 1966.Google Scholar
  930. [A2]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  931. [A3]
    Walther, Hj.: Ten applications of graph theory, Reidel, 1984.Google Scholar
  932. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  933. [2]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  934. [3]
    Turán, P.: ‘An extremal problem in graph theory’, Mat. Fiz. Lapok 48 (1941), 436–452 (in Hungarian; German summary).MathSciNetGoogle Scholar
  935. [A1]
    Bollobas, B.: Extremal graph theory, Acad. Press, 1978Google Scholar
  936. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  937. [2]
    Graph theory. Coverings, imbeddings, tournaments, Moscow, 1974, pp. 82-159 (in Russian; translated from the English, the French and the German).Google Scholar
  938. [A1]
    White, A.T. and Beineke, L.W.: ‘Topological graph theory’, in L.W. Beineke and R.J. Wilson (eds.): Selected topics in graph theory, Acad. Press, 1978, Chapt. 2.Google Scholar
  939. [A2]
    White, A.T.: ‘The proof of the Heawood conjecture’, in L.W. Beineke and R.J. Wilson (eds.): Selected topics in graph theory, Acad. Press, 1978, Chapt. 3.Google Scholar
  940. [A3]
    White, A.T.: Graphs, groups and surfaces, North-Holland, 1973.Google Scholar
  941. [A4]
    Ringel, G.: Map colour theorem, Springer, 1974.Google Scholar
  942. [1]
    Hopcroft, J.E. and Tarjan, R.: Isomorphism of planar graphs, Plenum, 1972, pp. 131-152; 187-212.Google Scholar
  943. [2]
    Kelly, P.J.: ‘A congruence theorem for trees’, Pacific J. Math. 7 (1957), 961–968.MathSciNetMATHGoogle Scholar
  944. [A1]
    Read, R.C. and Corneil, D.G.: ‘The graph isomorphism disease’, J. Graph Theory 1 (1977), 339–363.MathSciNetMATHGoogle Scholar
  945. [A2]
    Gati, G.: ‘Further annotated bibliography on the isomorphism disease’, J. Graph Theory 3 (1979), 95–109.MathSciNetMATHGoogle Scholar
  946. [A3]
    Ulam, S.M.: A collection of mathematical problems, Wiley, 1960.Google Scholar
  947. [A4]
    Bondy, J.A. and Hemminger, R.L.: ‘Graph reconstruction — a survey’, J. Graph Theory 1 (1977), 227–268.MathSciNetMATHGoogle Scholar
  948. [A5]
    Nash-Williams, C.St.J.A.: ‘The reconstruction problem’, in L.W. Beineke and R.J. Wilson (eds.): Selected Topics in Graph Theory, Acad. Press, 1978, Chapt. 8.Google Scholar
  949. [A6]
    Hopcroft, J.E. and Tarjan, R.E.: Complexity of computer computations, Plenum, 1972, pp. 131-152; 187-212.Google Scholar
  950. [A7]
    Hopcroft, J.E. and Tarjan, R.E.: ‘Efficient planarity testing’, J. ACM 21 (1974), 549–568.MathSciNetMATHGoogle Scholar
  951. [1]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  952. [2]
    Kozyrev, V.P.: ‘Graph theory’, J. Soviet Math. 2 (1974), 489–519. (Itogi Nauk. i Tekhn. Ser. Teor. Veroyatn. Mat. Stat. Teoret. Kibernet. 10 (1972), 25-75)MathSciNetMATHGoogle Scholar
  953. [3]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  954. [A1]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  955. [A1]
    De Wilde, M.: Closed graph theorems and webbed spaces, Pitman, 1978.Google Scholar
  956. [A2]
    Schaefer, H.H.: Topological vector spaces, Macmillan, 1966.Google Scholar
  957. [1]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  958. [2]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  959. [3]
    Picard, C.F.: Graphs and questionnaires, North-Holland, 1980 (translated from the French).Google Scholar
  960. [A1]
    Harary, F., Norman, R.Z. and Cartwright, D.: Structural models. An introduction to the theory of directed graphs, Wiley, 1965.Google Scholar
  961. [A2]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  962. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  963. [A1]
    Ore, O.: The four-colour problem, Acad. Press, 1967.Google Scholar
  964. [A2]
    Woodall, D.R. and Wilson, R.J.: ‘The Appel—Haken proof of the four-colour theorem’, In L.W. Beineke and R.J. Wilson (eds.): Selected Topics in Graph Theory, Acad. Press, 1978, Chapt. 4.Google Scholar
  965. [A3]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  966. [1]
    Moore, E.F. and Shannon, C.E.: ‘Reliable circuits using less reliable relays, I,II’, J. Franklin Inst. 1 (1960), 109–148.Google Scholar
  967. [2]
    Stepanov, V.E.: Problems in Cybernetics. Proc. Sem. in comb. math., Moscow, 1973, pp. 164-185 (in Russian).Google Scholar
  968. [3]
    Discrete mathematics and mathematical problems in cybernetics, 1, Moscow, 1974 (in Russian).Google Scholar
  969. [4]
    Sapozhenko, A.: ‘The geometric structure of almost all Boolean functions’, Probl. Kibernetiki 30 (1975), 227–261 (in Russian).MATHGoogle Scholar
  970. [A1]
    Erdös, P. and Renyi, A.: ‘On random graphs I’, Publ. Math. Debrecen 6 (1959), 290–297.MathSciNetMATHGoogle Scholar
  971. [A2]
    Erdös, P. and Renyi, A.: ‘On the evolution of random graphs’, Publ. Math. Inst. Hung. Acad. Sci. 5 (1960), 17–61.MATHGoogle Scholar
  972. [A3]
    Bollobas, B. (ed.): Graph theory and combinatorics, Acad. Press, 1984.Google Scholar
  973. [1]
    Euler, L.: Commentationes Arithmetica Collectae, St. Petersburg, 1766, pp. 66-70.Google Scholar
  974. [2]
    Kirchhoff, G.: Poggendorff Annalen 72 (1847), 497–508.Google Scholar
  975. [3]
    Cayley, A.: ‘On the theory of the analytical forms called trees’, in Collected mathematical papers, Vol. 3, Cambridge Univ. Press, 1854, pp. 242–26.Google Scholar
  976. [4]
    König, D.: Theorie der endlichen und unendlichen Graphen, Teubner, reprint, 1986.Google Scholar
  977. [5]
    Berge, C.: The theory of graphs and their applications, Wiley, 1962 (translated from the French).Google Scholar
  978. [6]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  979. [7]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  980. [8]
    Kozyrev, V.P.: ‘Graph theory’, J. Soviet Math. 2 (1974), 489–519. (Itogi Nauk. i Tekhn. Tear. Veroyat. Mat. Stat. Teor. Kibern. 10 (1972), 25-74)MathSciNetMATHGoogle Scholar
  981. [9]
    Harary, F. and Palmer, E.: Graphical enumeration, Acad. Press, 1973.Google Scholar
  982. [A1]
    Biggs, N.L., Lloyd, E.K. and Wilson, R.J.: Graph theory 1736–1936, Clarendon Press, 1976.Google Scholar
  983. [A2]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  984. [A3]
    Walther, Hj.: Ten applications of graph theory, Reidel, 1984.Google Scholar
  985. [1]
    Markov, A.A.: Theory of algorithms, Israel Progr. Sci. Transl., 1961 (translated from the Russian). Also: Trudy Mat. Inst. Steklov. 42 (1954).Google Scholar
  986. [2]
    Markov, A.A. and Nagorny, N.M. [N.M. Nagornyĭ]: The theory of algorithms, Kluwer Acad. Publ., 1988 (translated from the Russian).Google Scholar
  987. [1]
    Hodge, W.V.D. and Pedoe, D.: Methods of algebraic geometry, 2, Cambridge Univ. Press, 1952.Google Scholar
  988. [2]
    Husemoller, D.: Fibre bundles, McGraw-Hill, 1966.Google Scholar
  989. [3A]
    Borel, A.: ‘Sur la cohomogie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts’, Ann of Math. 57 (1953), 115–207.MathSciNetMATHGoogle Scholar
  990. [3B]
    Borel, A.: ‘La cohomologie mod 2 de certains espaces homogènes’, Comm. Math. Heb. 27 (1953), 165–197.MathSciNetMATHGoogle Scholar
  991. [3C]
    Borel, A. and Serre, J.-P.: ‘Groupes de Lie et puissances réduites de Steenrod’, Amer. J. Math. 75 (1953), 409–448.MathSciNetMATHGoogle Scholar
  992. [4]
    Chern, S.S.: Complex manifolds without potential theory, Springer, 1979.Google Scholar
  993. [A1]
    Griffiths, P.A. and Harris, J.E.: Principles of algebraic geometry, 1–2, Wiley, 1978.Google Scholar
  994. [A2]
    Wells, R.O., jr.: Differential analysis on complex manifolds, Springer, 1980.Google Scholar
  995. [1]
    Sretenskiĭ, L.N.: Theory of the Newton potential, Moscow-Leningrad, 1946 (in Russian).Google Scholar
  996. [2]
    Duboshin, G.N.: The theory of attraction, Moscow, 1961 (in Russian).Google Scholar
  997. [3]
    Einstein, A.: Selected works, Vol. 1–2, Moscow, 1966 (in Russian).Google Scholar
  998. [4]
    Fock, V.A. [V.A. Fok]: The theory of space, time and gravitation, Macmillan, 1954 (translated from the Russian).Google Scholar
  999. [5]
    Weber, J.: General relativity and gravitational waves, Interscience, 1961.Google Scholar
  1000. [6]
    Synge, J.L.: Relativity: the general theory, North-Holland & Interscience, 1960.Google Scholar
  1001. [7]
    Petrov, A.Z.: New methods in general relativity theory, Moscow, 1966 (in Russian).Google Scholar
  1002. [8]
    Karal’nikova, I.I.: ‘The history of the development of the pre-relativistic interpretations on the nature of gravitation’, Uchen. Zap. Yaroslavsk. Fed Inst. Kafedra Astron. i Teoret. Fiz. 56 (1963) (in Russian).Google Scholar
  1003. [9]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics, Moscow, 1967 (in Russian).Google Scholar
  1004. [10]
    Petrov, A.Z.: ‘The general theory of relativity’, in The development of physics in the USSR, Vol. 1, Moscow, 1967 (in Russian).Google Scholar
  1005. [11]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics, 1. Stars and relativity, Chicago, 1971 (translated from the Russian).Google Scholar
  1006. [12]
    Zel’dovich, Ya.B. and Novicov, I.D.: Relativistic astrophysics, 2. Structure and evolution of the universe, Chicago, 1983 (translated from the Russian).Google Scholar
  1007. [13]
    Isaacson, R.A.: Phys. Rev. 166 (1968), 1263.Google Scholar
  1008. [14]
    Isaacson, R.A.: Phys. Rev. 166 (1968), 1272.Google Scholar
  1009. [A1]
    McMillan, W.D.: The theory of the potential, McGraw-Hill, 1930.Google Scholar
  1010. [A2]
    Jammer, M.: Concepts of force, Harvard Univ. Press, 1957. Especially Chapt. 10.Google Scholar
  1011. [A3]
    Cohen, I.B.: The ‘principia’, universal gravitation, and the ‘Newtonian style’ in relation to the Newtonian revolution in science’, in Z. Bechler (ed.): Contemporary Newtonian research, Reidel, 1982, pp. 21-108.Google Scholar
  1012. [A4]
    Westfall, R.S.: Force in Newtonian physics, Macdonald, 1971.Google Scholar
  1013. [A5]
    Hulse, R.A. and Taylor, J.H.: Astrophysics J. Lett. 195 (1975), L51.Google Scholar
  1014. [A6]
    Shapiro, S.L. and Teukolsky, S.A.: Black holes, white dwarfs and neutron stars, Wiley, 1983, p. 479.Google Scholar
  1015. [A7]
    DeWitt, C. and DeWitt, B. (eds.): Relativity, groups and topology, Gordon & Breach, 1964.Google Scholar
  1016. [A8]
    Weyl, H.: Space-Time-Matter, Dover, reprint, 1950 (translated from the German).Google Scholar
  1017. [1]
    Einstein, A.: Selected works, 1–2, Moscow, 1966 (in Russian).Google Scholar
  1018. [2]
    Misner, C.W., Thorne, K.S. and Wheeler, J.A.: Gravitation, Freeman, 1973.Google Scholar
  1019. [3]
    Kramer, D., Stephani, H., MacCallum, M. and Herlt, E.: Exact solutions of Einstein’s field equations, Cambridge Univ. Press, 1980.Google Scholar
  1020. [4]
    Petrov, A.Z.: Einstein spaces, Pergamon, 1969 (translated from the Russian).Google Scholar
  1021. [5]
    Hawking, S.W. and Elus, G.F.R.: The large-scale structure of space-time, Cambridge Univ. Press, 1973.Google Scholar
  1022. [6]
    Held, A. (ed.): General relativity and gravitation. One hundred years after the birth of Albert Einstein, 1–2, Plenum, 1980.Google Scholar
  1023. [A1]
    Kramer, D. and Neugebauer, G.: Båcklund transformations in general relativity, Lect. notes in physics, 205, Springer, 1984, pp. 1-25.Google Scholar
  1024. [A2]
    Hauser, I.: On the homogeneous Hilbert problem for effecting Kinnersley—Chitre transformations, Lect. notes in physics, 205, Springer, 1984, pp. 128-175.Google Scholar
  1025. [A3]
    Xanthopoulos, B.C.: Superposition of solutions in general relativity, Lect. notes in physics, 239, Springer, 1985, pp. 109-117.Google Scholar
  1026. [A4]
    Chinea, F.J.: Vector Båcklund transformations and associated superposition principle, Lect. notes in physics, 205, Springer, 1984, pp. 55-67.Google Scholar
  1027. [A5]
    Ernst, F.J.: The homogeneous Hilbert problem: practical application, Lect. notes in physics, 205, Springer, 1984, pp. 176-185.Google Scholar
  1028. [A6]
    Xanthopoulos, B.C.: Symmetries and solutions of the Einstein equations, Lect. notes in physics, 239, Springer, 1985, pp. 77-108.Google Scholar
  1029. [A7]
    Schmidt, B.G.: The Geroch group is a Banach Lie group, Lect. notes in physics, 205, Springer, 1984, pp. 113-127.Google Scholar
  1030. [1]
    Vinogradov, I.M.: Elements of number theory, Dover, 1954 (translated from the Russian).Google Scholar
  1031. [2]
    Bukhshtab, A.A.: Number theory, Moscow, 1966 (in Russian).Google Scholar
  1032. [3]
    Markushevich, A.I.: Division with remainder in arithmetic and algebra, Moscow-Leningrad, 1949 (in Russian).Google Scholar
  1033. [4]
    Faure, R., Kaufman, A. and Denis-Papin, M.: Mathématique nouvelle, Dunod, 1964.Google Scholar
  1034. [5]
    Lang, S.: Algebra, Addison-Wesley, 1974.Google Scholar
  1035. [6]
    Ireland, K. and Rosen, M.: A classical introduction to modern number theory, Springer, 1982.Google Scholar
  1036. [A1]
    Waerden, B.L. van der: Algebra, 1, Springer, 1967 (translated from the German).Google Scholar
  1037. [1]
    Green, J.: ‘On the structure of semigroups’, Ann. of Math. 54 (1951), 163–172.MathSciNetMATHGoogle Scholar
  1038. [2]
    Lyapin, E.S.: Semigroups, Amer. Math. Soc., 1974 (translated from the Russian).Google Scholar
  1039. [3]
    Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups, 1–2, Amer. Math. Soc., 1961–1967.Google Scholar
  1040. [4]
    The algebraic theory of automata, languages and semi-groups, Moscow, 1975 (in Russian; translated from the English).Google Scholar
  1041. [5]
    Hofmann, K.H. and Mostert, P.: Elements of compact semigroups, C.E. Merrill, Columbus, Ohio, 1966.Google Scholar
  1042. [1]
    Green, G.: An essay on the application of mathematical analysis to the theories of electricity and magnetism, Nottingham, 1828. Reprint: Mathematical papers, Chelsea, reprint, 1970, pp. 1-82.Google Scholar
  1043. [2]
    Maxwell, J.: Selected works on the theory of electromagnetic fields, Moscow, 1954 (in Russian; translated from the English).Google Scholar
  1044. [3]
    Smirnov, V.I.: A course of higher mathematics, 2, Addison-Wesley, 1964 (translated from the Russian).Google Scholar
  1045. [4]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  1046. [5]
    Vladimirov, V.S.: Equations of mathematical physics, Mir, 1984 (translated from the Russian).Google Scholar
  1047. [6]
    Sobolev, S.L.: Partial differential equations of mathematical physics, Pergamon, 1964 (translated from the Russian).Google Scholar
  1048. [7]
    Miranda, C.: Partial differential equations of elliptic type, Springer, 1970 (translated from the Italian).Google Scholar
  1049. [8]
    Dunford, N. and Schwartz, J.T.: Linear operators. Spectral theory, 2, Interscience, 1963.Google Scholar
  1050. [9]
    Lions, J.L. and Magenes, E.: Non-homogenous boundary value problems and applications, 1–2, Springer, 1972 (translated from the French).Google Scholar
  1051. [1]
    Naĭmark, M.A.: Lineare Differentialoperatoren, Akademie-Verlag, 1960 (translated from the Russian).Google Scholar
  1052. [2]
    Keldysh, M.V.: ‘On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations’, Dokl. Akad. Nauk. SSSR 77, no. 1 (1951), 11–14 (in Russian).MATHGoogle Scholar
  1053. [3]
    Sobolev, V.V.: A course in theoretical astrophysics, Moscow, 1967 (in Russian).Google Scholar
  1054. [4]
    Bers, L., John, F. and Schechter, M: Partial differential equations, Interscience, 1964.Google Scholar
  1055. [5]
    Gårding, L.: ‘Dirichlet’s problem for linear elliptic partial differential equations’, Math. Scand. 1, no. 1 (1953), 55–72.MathSciNetMATHGoogle Scholar
  1056. [6]
    Friedman, A.: Partial differential equations of parabolic type, Prentice-Hall, 1964.Google Scholar
  1057. [7]
    Eĭdel’man, S.D.: Parabolic systems, North-Holland, 1969 (translated from the Russian).Google Scholar
  1058. [A1]
    Hale, J.K.: Ordinary differential equations, Wiley, 1980.Google Scholar
  1059. [A2]
    Garabedian, P.R.: Partial differential equations, Wiley, 1964.Google Scholar
  1060. [1]
    Stoĭlov, S.: The theory of functions of a complex variable, 1–2, Moscow, 1962 (in Russian; translated from the Rumanian).Google Scholar
  1061. [2]
    Nevanlinna, R.: Uniformisierung, Springer, 1953.Google Scholar
  1062. [3]
    Brélot, M: Eléments de la théorie classique du potentiel, Centre Docum. Univ. Paris, 1959.Google Scholar
  1063. [A1]
    Helms, L.L.: Introduction to potential theory, Wiley (Interscience), 1969.Google Scholar
  1064. [A2]
    Janssen, K.: ‘On the existence of a Green function for harmonic spaces’, Math. Annalen 208 (1974), 295–303.MATHGoogle Scholar
  1065. [A3]
    Landkof, N.S. [N.S. Landkov]: Foundations of modern potential theory, Springer, 1972 (translated from the Russian).Google Scholar
  1066. [A4]
    Bedford, E.: Survey of pluri-potential theory, forthcoming.Google Scholar
  1067. [A5]
    Cegrell, U.: Capacities in complex analysis, Vieweg, 1988.Google Scholar
  1068. [A6]
    Demailly, J.P.: ‘Mesures de Monge—Ampère et mesures pluriharmoniques’, Math. Z. 194 (1987), 519–564.MathSciNetMATHGoogle Scholar
  1069. [1]
    Bogolyubov, N.N. and Tyablikov, S.V.: ‘Retarded and advanced Green functions in statistical physics’, Soviet Phys. Dokl. 4 (1960), 589–593. (Dokl. Akad. Nauk SSSR 126 (1959), 53)Google Scholar
  1070. [2]
    Zubarev, D.N.: ‘Double-time Green functions in statistical physics’, Soviet Phys. Uspekhi 3 (1960), 320–345. (Uspekhi Fiz. Nauk 71 (1960), 71-116)MathSciNetGoogle Scholar
  1071. [3]
    Bogolyubov, jr., N.N. and Sadovnikov, B.I.: Zh. Eksperim. Tear. Fiz. 43, no. 8 (1962), 677.Google Scholar
  1072. [4]
    Bogolyubov, jr., N.N. and Sadovnikov, B.I.: Some questions in statistical mechanics, Moscow, 1975 (in Russian).Google Scholar
  1073. [5]
    Statistical physics and quantum field theory, Moscow, 1973 (in Russian).Google Scholar
  1074. [1]
    Landkof, N.S. [N.S. Landkov]: Foundations of modern potential theory, Springer, 1972, Chapt. 1 (translated from the Russian).Google Scholar
  1075. [2]
    Brélot, M. and Choquet, G.: ‘Espaces et lignes de Green’, Ann. Inst. Fourier 3 (1952), 199–263.Google Scholar
  1076. [1]
    Brélot, M.: On topologies and boundaries in potential theory, Springer, 1971.Google Scholar
  1077. [2]
    Brélot, M. and Choquet, G.: ‘Espaces et lignes de Green’, Ann. Inst. Fourier 3 (1952), 199–263.Google Scholar
  1078. [1]
    Berezin, I.S. and Zhidkov, N.P.: Computing methods, Pergamon, 1973 (translated from the Russian).Google Scholar
  1079. [A1]
    Brass, H.: Quadraturverfahren, Vandenhoeck & Ruprecht, 1977.Google Scholar
  1080. [A2]
    Brunner, H. and Houwen, P.J. van der: The numerical solution of Volterra equations, North-Holland, 1986.Google Scholar
  1081. [A3]
    Brunner, H. and Lambert, J.D.: ‘Stability of numerical methods for Volterra integro-differential equations’, Computing 12 (1974), 75–89.MathSciNetMATHGoogle Scholar
  1082. [A4]
    Matthys, J.: ‘A stable linear multistep method for Volterra integro-differential equations’, Numer. Math. 27 (1976), 85–94.MathSciNetMATHGoogle Scholar
  1083. [A5]
    Steinberg, J.: ‘Numerical solution of Volterra integral equations’, Numer. Math. 19 (1972), 212–217.MathSciNetMATHGoogle Scholar
  1084. [A6]
    Wolkenfelt, P.H.M.: ‘The construction of reducible quadrature rules for Volterra integral and integro-differential equations’, IMA J. Numer. Anal. 2 (1982), 131–152.MathSciNetMATHGoogle Scholar
  1085. [A1]
    Lapodus, L. and Pinder, G.: Numerical solution of partial differential equations in science and engineering, Wiley, 1982.Google Scholar
  1086. [1]
    Gronwall, T.H.: ‘Summation of series and conformal mapping’, Ann. of Math. 33, no. 1 (1932), 101–117.MathSciNetGoogle Scholar
  1087. [1]
    Grothendieck, A.: ‘Sur quelques points d’algèbre homologique’, Tôhoku Math. J. (2) 9 (1957), 119–221.MathSciNetMATHGoogle Scholar
  1088. [2]
    Bucur, I. and Deleanu, A.: Introduction to the theory of categories and functors, Wiley, 1968.Google Scholar
  1089. [3]
    Popesco, N. [N. Popescu] and Gabriel, P.: ‘Characterisation des catégories abéliennes avec générateurs et limites inductives exactes’, C.R. Acad. Sci. 258 (1964), 4188–4190.MathSciNetMATHGoogle Scholar
  1090. [A1]
    Popescu, N.: Abelian categories with applications to rings and modules, Acad. Press, 1973.Google Scholar
  1091. [1]
    Bucur, I. and Deleanu, A.: Introduction to the theory of categories and functors, Wiley, 1968.Google Scholar
  1092. [2]
    Grothendieck, A.: Technique de descente et théorèmes d’existence en géométrie algébrique, II’, Sem. Bourbaki Exp. 195 (1960).Google Scholar
  1093. [A1]
    MacLane, S.: Categories for the working mathematician, Springer, 1971.Google Scholar
  1094. [A2]
    Yoneda, N.: ‘On the homology theory of modules’, J. Fac. Sci. Tokyo. Sec. I 7 (1954), 193–227.MathSciNetMATHGoogle Scholar
  1095. [1]
    Swan, R.: ‘The Grothendieck ring of a finite group’, Topology 2 (1963), 85–110.MathSciNetMATHGoogle Scholar
  1096. [2]
    Borel, A. and Serre, J.P.: ‘Le théorème de Riemann—Roch’, Bull. Soc. Math. France 86 (1958), 97–136.