Advertisement

G

  • A. F. Kharshiladze
  • D. V. Alekseevskiĭ
  • N. N. Vorob’ev
  • V. A. Trenogin
  • A. Z. Petrov
  • D. D. Sokolov
  • E. A. Nisnevich
  • A. I. Skopin
  • S. P. Demushkin
  • V. P. Platonov
  • O. A. Ivanova
  • L. A. Skornyakov
  • I. V. Dolgachev
  • M. M. Postnikov
  • K. I. Beĭdar
  • A. V. Mikhalev
  • B. A. Sevast’yanov
  • E. B. Yanovskaya
  • V. K. Domanskiĭ
  • A. N. Lyapunov
  • A. S. Mikhaĭlova
  • F. I. Ereshko
  • I. A. Vatel’
  • O. V. Sarmanov
  • A. V. Prokhorov
  • Yu. V. Prokhorov
  • L. P. Kuptsov
  • A. A. Dezin
  • Yu. I. Shokin
  • N. N. Yanenko
  • L. N. Sretenskiĭ
  • V. M. Tikhomirov
  • V. D. Kukin
  • Yu. D. Burago
  • D. P. Zhelobenko
  • M. K. Samarin
  • S. N. Chernikov
  • B. M. Bredikhin
  • V. V. Rumyantsev
  • N. S. Bakhvalov
  • V. P. Motornyĭ
  • S. A. Stepanov
  • L. N. Shevrin
  • A. P. Prudnikov
  • E. D. Solomentsev
  • R. L. Dobrushin
  • V. V. Prelov
  • E. V. Shikin
  • D. V. Anosov
  • E. A. Gorin
  • L. N. Bol’shev
  • N. Kh. Rozov
  • V. E. Plisko
  • A. V. Arkhangel’skiĭ
  • V. A. Iskovskikh
  • B. M. Levitan
  • A. V. Bitsadze
  • Yu. B. Rudyak
  • S. M. Nikol’skiĭ
  • G. L. Litvinov
  • V. S. Vladimirov
  • A. L. Shmel’kin
  • V. I. Ponomarev
  • P. K. Suetin
  • S. G. Kreĭn
  • V. I. Danilov
  • M. I. Voĭtsekhovskiĭ
  • A. Wörz-Busekros
  • G. E. Mints
  • Vik. S. Kulikov
  • A. S. Rapinchuk
  • V. I. Dmitriev
  • V. A. Zalgaller
  • Yu. A. Volkov
  • Yu. S. Slobodyan
  • V. F. Eremeev
  • M. I. Yurkina
  • V. M. Babich
  • E. G. Sklyarenko
  • P. S. Modenov
  • A. S. Parkhomenko
  • V. M. Kalinin
  • N. M. Ostianu
  • E. G. Poznyak
  • A. D. Aleksandrov
  • V. A. Toponogov
  • S. Z. Shefel’
  • A. V. Malyshev
  • E. M. Chirka
  • I. A. Kvasnikov
  • P. L. Ul’yanov
  • K. P. Latyshev
  • I. A. Shishmarev
  • V. L. Popov
  • G. V. Kuz’mina
  • E. N. Kuz’min
  • A. S. Fedenko
  • E. G. Goluzina
  • V. N. Grishin
  • A. A. Karatsuba
  • A. G. Dragalin
  • M. S. Nikulin
  • V. T. Bazylev
  • A. M. Nakhushev
  • A. K. Mitropol’skiĭ
  • A. V. Gladkiĭ
  • V. P. Kozyrev
  • V. B. Alekseev
  • A. A. Sapozhenko
  • A. A. Konyushkov
  • N. M. Nagornyĭ
  • A. L. Onishchik
  • N. V. Mitskevich
  • A. A. Bukhshtab
  • V. N. Nechaev
  • A. K. Gushchin
  • Sh. A. Alimov
  • V. A. Il’in
  • V. N. Plechko
  • L. D. Kudryavtsev
  • M. Sh. Tsalenko
  • I. A. Aleksandrov
  • P. M. Tamrazov
  • M. I. Kargapolov
  • Yu. I. Merzlyakov
  • A. A. Bovdi
  • A. I. Shtern
  • E. B. Vinberg
  • I. P. Egorov
  • V. M. Kopytov
  • V. D. Belousov
  • A. F. Leont’ev
Part of the Encyclopaedia of Mathematics book series (ENMA, volume 2)

Keywords

Editorial Comment Galois Group Geometric Object Galois Theory Geodesic Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Husemoller, D.: Fibre bundles, McGraw-Hill, 1966.Google Scholar
  2. [2]
    Steenrod, N.E.: The topology of fibre bundles, Princeton Univ. Press, 1951.Google Scholar
  3. [1]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 1, Wiley, 1963.Google Scholar
  4. [2]
    Sternberg, S.: Lectures on differential geometry, Prentice-Hall, 1964.Google Scholar
  5. [3]
    Berger, M.: ‘Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes’, Bull. Soc. Math. France 83 (1955), 279–330.MathSciNetMATHGoogle Scholar
  6. [4]
    Chern, S.S,: ‘The geometry of G-structures’, Bull. Amer. Math. Soc. 72 (1966), 167–219.MathSciNetMATHGoogle Scholar
  7. [5]
    Kobayashi, S.: Transformation groups in differential geometry, Springer, 1972.Google Scholar
  8. [6]
    Molino, P.: Théorie des G-structures: le problème d’équivalence, Springer, 1977.Google Scholar
  9. [7]
    Morimoto, T.: ‘Sur le problème d’équivalence des structures géométriques’, C.R. Acad. Sci. Paris 292, no. 1 (1981), 63–66. English summary.MathSciNetMATHGoogle Scholar
  10. [8]
    Singer, I.M. and Sternberg, S.: ‘The infinite groups of Lie and Cartan. I. The transitive groups’, J. d’Anal. Math. 15 (1965), 1–114.MathSciNetMATHGoogle Scholar
  11. [9]
    Pollack, A.S.: ‘The integrability problem for pseudogroup structures’, J. Diff Geom. 9, no. 3 (1974), 355–390.MathSciNetMATHGoogle Scholar
  12. [1]
    Galerkin, B.G.: ‘On electrical circuits for the approximate solution of the Laplace equation’, Vestnik Inzk 19 (1915), 897–908 (in Russian).Google Scholar
  13. [2]
    Michlin, S.G. [S.G. Mikhlin]: Variationsmethoden der mathematischen Physik, Akademie-Verlag, 1962 (translated from the Russian).Google Scholar
  14. [3]
    Vaĭnberg, M.M.: Variational methods and methods of nonlinear operators in the theory of nonlinear equations, Wiley, 1973 (translated from the Russian).Google Scholar
  15. [A1]
    Marchuk, G.I.: Methods of numerical mathematics, Springer, 1982 (translated from the Russian).Google Scholar
  16. [A2]
    Mitchel, A.R. and Watt, R.: The finite element method in partial differential equations, Wiley, 1977.Google Scholar
  17. [A3]
    Stoer, J. and Bulirsch, R.: Einführung in die numerische Mathematik, II, Springer, 1973.Google Scholar
  18. [A4]
    Fletcher, C.A.J.: Computational Galerkin methods, Springer, 1984.Google Scholar
  19. [1]
    Fock, V.A. [V.A. Fok]: The theory of space, time and gravitation, Macmillan, 1964 (translated from the Russian).Google Scholar
  20. [A1]
    Arnol’d, V.I.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).Google Scholar
  21. [1]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  22. [2]
    Penrose, R. and Wheeler, J.A.:’ structure of space-time’, in C.M. DeWitt (ed.): Batelle Rencontres 1967 Lectures in Math. Physics, Benjamin, 1968.Google Scholar
  23. [1]
    Savelov, A.A.: Plane curves, Moscow, 1960 (in Russian).Google Scholar
  24. [A1]
    Arnol’d, V.I.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).Google Scholar
  25. [1]
    Serre, J.-P.: Cohomologie Galoisienne, Springer, 1964.Google Scholar
  26. [2]
    Serre, J.-P.: Groupes algébrique et corps des classes, Hermann, 1959.Google Scholar
  27. [3]
    Cassels, J.W.S. and Fröhlich, A. (eds.): Algebraic number theory, Acad. Press, 1986.Google Scholar
  28. [4]
    Koch, H.: Galoissche Theorie der p-Erweiterungen, Deutsch. Verlag Wissenschaft., 1970.Google Scholar
  29. [5]
    Artin, E. and Tate, J.: Class field theory, Benjamin, 1967.Google Scholar
  30. [6]
    Serre, J.-P.: Local fields, Springer, 1979 (translated from the French).Google Scholar
  31. [7]
    Borel, A. and Serre, J.-P.: ‘Théorèmes de finitude en cohomologie Galoisienne’, Comment Math. Heb. 39 (1964), 111–164.MathSciNetMATHGoogle Scholar
  32. [8]
    ‘Theorie des topos et cohomologie étale des schemas’, in A. Grothendieck, J.-L. Verdier and M. Artin (eds.): Sem. Geom. Alg. 4, Vol. 1–3, Springer, 1972.Google Scholar
  33. [9]
    Bruhat, F. and Tits, J.: ‘Groupes réductifs sur un corps local I. Données radicielles valuées’, Publ. Math. IHES, no. 41 (1972), 5–252.MathSciNetMATHGoogle Scholar
  34. [10]
    Borel, A.: ‘Some finiteness properties of adèle groups over number fields’, Publ. Math. IHES, no. 16 (1963), 5–30.MathSciNetGoogle Scholar
  35. [11]
    Steinberg, R.: ‘Regular elements of semisimple algebraic groups’, Publ. Math. IHES, no. 25 (1965), 49–80.Google Scholar
  36. [12A]
    Kneser, M.: ‘Galois-Kohomologie halbeinfacher algebraischer Gruppen über ρ-adische Körpern I’, Math. Z 88 (1965), 40–47.MathSciNetMATHGoogle Scholar
  37. [12B]
    Kneser, M.: ‘Galois-Kohomologie halbeinfacher algebraischer Gruppen über ρ-adische Körpern II’, Math. Z. 89 (1965), 250–272.MathSciNetGoogle Scholar
  38. [13A]
    Harder, G.: ‘Über die Galoiskohomologie halbeinfacher Matrizengruppen I’, Math. Z. 90 (1965), 404–428.MathSciNetMATHGoogle Scholar
  39. [13B]
    Harder, G.: ‘Über die Galoiskohomologie halbeinfacher Matrizengruppen II’, Math. Z. 92 (1966), 396–415.MathSciNetMATHGoogle Scholar
  40. [A1]
    Manin, Yu.I.: Cubic forms, North-Holland, 1974 (translated from the Russian).Google Scholar
  41. [A2]
    Colliot-Thélène, J.-L. and Sansuc, J.J.: ‘La descente sur les variétés rationnelles II’, Duke Math. J. 54 (1987), 375–492.MathSciNetMATHGoogle Scholar
  42. [A3]
    Voskresenskiĭ, V.E.: Algebraic tori, Moscow, 1977 (in Russian).Google Scholar
  43. [A4]
    Chernusov, V.l.: ‘On the Hasse principle for groups of type E 8’, (To appear) (in Russian).Google Scholar
  44. [A5]
    Bruhat, F. and Tits, J.: ‘Groupes réductifs sur un corps local III. Complements et applications à la cohomologie Galoisiènne’, J. Fac. Sci. Univ. Tokyo 34 (1987), 671–698.MathSciNetMATHGoogle Scholar
  45. [A6]
    Harder, G.: ‘Chevalley groups over function fields and auto-morphic forms’, Ann. of Math. 100 (1974), 249–306.MathSciNetMATHGoogle Scholar
  46. [A7]
    Albert, A.: Structure of algebras, Amer. Math. Soc., 1939, p. 143.Google Scholar
  47. [A8]
    Brauer, R., Hasse, H. and Noether, E.: ‘Beweis eines Haupsatzes in der Theorie der Algebren’, J. Reine Angew. Math. 107 (1931), 399–404.Google Scholar
  48. [1]
    Cohn, P.M.: Universal algebra, Reidel, 1981.Google Scholar
  49. [2]
    Kurosh, A.G.: Lectures on general algebra, Chelsea, 1963 (translated from the Russian).Google Scholar
  50. [1]
    Galois, E.: Écrits et mémoires d’E. Galois, Gauthier-Villars, 1962.Google Scholar
  51. [2]
    Waerden, B.L. van der: Algebra, 1–2, Springer, 1967–1971 (translated from the German).Google Scholar
  52. [3]
    Tschebotaröw, N.G. [N.G. Chebotarev]: Grundzüge der Galois’schen Theorie, Noordhoff, 1950 (translated from the Russian).Google Scholar
  53. [4]
    Bourbaki, N.: Algebra, Springer, 1989, Chapt. 1–3 (translated from the French)Google Scholar
  54. [1]
    Bourbaki, N.: Algebra, Springer, 1989, Chapt. 1–3 (translated from the French).Google Scholar
  55. [2]
    Lang, S.: Algebra, Addison-Wesley, 1984.Google Scholar
  56. [3]
    Postnikov, M.M.: Galois theory, Moscow, 1962 (in Russian).Google Scholar
  57. [4]
    Jacobson, N.: The theory of rings, Amer. Math. Soc., 1943.Google Scholar
  58. [1]
    Galois, E.: Écrits et mémoires d’E. Galois, Gauthier-Villars, 1962.Google Scholar
  59. [2]
    Tschebotaröw, N.G. [N.G. Chebotarev]: Grundzüge der Galois’sehen Theorie, Noordhoff, 1950 (translated from the Russian).Google Scholar
  60. [3]
    Chebotarev, N.G.: Galois theory, Moscow-Leningrad, 1936 (in Russian).Google Scholar
  61. [4]
    Postnikov, M.M.: Fundamentals of Galois theory, Noordhoff, 1962 (translated from the Russian).Google Scholar
  62. [5]
    Postnikov, M.M.: Galois theory, Moscow, 1963 (in Russian).Google Scholar
  63. [6]
    Waerden, B.L. van der: Algebra, 1–2, Springer, 1967–1971 (translated from the German).Google Scholar
  64. [7]
    Lang, S.: Algebra, Addison-Wesley, 1974.Google Scholar
  65. [8]
    Bourbaki, N.: Elements of mathematics. Algebra: Modules. Rings. Forms, 2, Addison-Wesley, 1975, Chapt. 4; 5; 6 (translated from the French).Google Scholar
  66. [9]
    Koch, H.: Galoische Theorie der p-Erweiterungen, Deutsch. Verlag Wissenschaft., 1970.Google Scholar
  67. [10]
    Artin, E.: Galois theory, Notre Dame Univ., Indiana, 1948.Google Scholar
  68. [1]
    Tschebotaröw, N.G. [N.G. Chebotarev]: Grundzüge der Galois’sehen Theorie, Noordhoff, 1950 (translated from the Russian).Google Scholar
  69. [2A]
    Shafarevich, I.R.: ‘On the construction of a field with a given Galois group of order 1α’, Izv. Akad. Nauk SSSR 18, no. 2 (1954), 261–296 (in Russian).MATHGoogle Scholar
  70. [2B]
    Shafarevich, I.R.: ‘The construction of an algebraic number field with a given solvable Galois group’, Izv. Akad Nauk SSSR 18, no. 3 (1954), 525–578 (in Russian).MATHGoogle Scholar
  71. [A1]
    Belyĭ, G.V.: ‘On extensions of the maximal cyclotomic field having a given classical Galois group’, J. Reine Angew. Math. 341 (1983), 147–156.MathSciNetMATHGoogle Scholar
  72. [A2]
    Matzat, B.H.: Konstruktive Galoistheorie, Lecture notes in math., 1284, Springer, 1987.Google Scholar
  73. [A3]
    J.P. Serre: ‘Groupes de Galois sur Q’, Sem. Bourbaki Exp. 689 (1987).Google Scholar
  74. [1]
    Jacobson, N.: Structure of rings, Amer. Math. Soc., 1956.Google Scholar
  75. [2]
    Chase, S.U. and Swedler, ME.: Hopf algebras and Galois theory, Springer, 1969.Google Scholar
  76. [3]
    Meyer, F. de and Ingraham, E.: Separable algebras over commutative rings, Springer, 1971.Google Scholar
  77. [4]
    Magid, A.R.: The separable Galois theory of commutative rings, M. Dekker, 1974.Google Scholar
  78. [A1]
    Chase, S.U., Harrison, D.K. and Rosenberg, A.: Galois theory and Galois cohomology of commutative rings, Amer Math. Soc., 1965.Google Scholar
  79. [A1]
    Arthreya, K.B. and Ney, P.E.: Branching processes, Springer, 1972.Google Scholar
  80. [A2]
    Harris, Th.E.: The theory of branching processes, Springer, 1963.Google Scholar
  81. [1]
    Karlin, S.: Mathematical methods and theory in games, programming and economics, Addison-Wesley, 1959.Google Scholar
  82. [1]
    Dubins, L.E. and Savage, L.J.: How to gamble if you must: inequalities for stochastic processes, McGraw-Hill, 1965.ai][1]_Milnor, J. and Shapley, L.S.: ‘On games of survival’, in Contributions to the theory of games, Vol. 3, Princeton Univ. Press, 1957, pp. 15-45.Google Scholar
  83. [2]
    Blackwell, D.: ‘On multi-component attrition games’, Naval Res. Logist. Quart. 1 (1954), 210–216.MathSciNetGoogle Scholar
  84. [3]
    Romanovskiĭ, I.V.: ‘Game-type random walks’, Theor. Probabl. Appl 6 (1961), 393–396. (Teor. Veroyatnost. i Primenen. 6, no. 4 (1961), 426-429).Google Scholar
  85. [A1]
    Luce, R.D. and Raiffa, H.: Games and decisions, Wiley, 1957.Google Scholar
  86. [1]
    Berge, G: Théorie générale des jeux à n personnes, Gauthier-Villars, 1957.Google Scholar
  87. [2]
    Kummer, B.: Spiele auf Graphen, Birkhaüser, 1980.Google Scholar
  88. [A1]
    Berge, C.: Graphs and hypergraphs, North-Holland, 1977 (translated from the French).Google Scholar
  89. [A2]
    Conway, J.H.: On numbers and games, Acad. Press, 1976.Google Scholar
  90. [A3]
    Berlekamp, E.R., Conway, J.H. and Guy, R.K.: Winning ways for your mathematical plays, 1–2, Acad. Press, 1982.Google Scholar
  91. [1]
    Karlin, S.: Mathematical methods and theory in games, programming and economics, Addison-Wesley, 1959.Google Scholar
  92. [A1]
    Luce, R.D. and Raiffa, H.: Games and decisions, Wiley, 1957.Google Scholar
  93. [1]
    Germeĭer, Yu.B.: Games with non-conflicting interests, Moscow, 1972 (in Russian).Google Scholar
  94. [A1]
    Basar, T. and Olsder, G.J.: Dynamic noncooperative game theory, Acad. Press, 1982.Google Scholar
  95. [A2]
    Luk, P.B., Ho, Y.C. and Olsder, G.J.: ‘A control-theoretical view on incentives’, Automatica 18 (1982), 167–179.Google Scholar
  96. [1]
    Neumann, J. von and Morgenstern, O.: Theory of games and economic behavior, Princeton Univ. Press, 1947.Google Scholar
  97. [2]
    Luce, R.D. and Raiffa, H.: Games and decisions, Wiley, 1957.Google Scholar
  98. [3]
    Karlin, S.: Mathematical methods and theory in games, programming and economics, Addison-Wesley, 1959.Google Scholar
  99. [4]
    Parthasarathy, T. and Raghavan, T.E.S.: Some topics in two-person games, Amer. Elsevier, 1971.Google Scholar
  100. [5]
    Vorob’ev, N.N.: Entwicklung der Spieltheorie, Deutsch. Verlag Wissenschaft., 1975.Google Scholar
  101. [6]
    The theory of games. Annotated index of publications up to 1968, Leningrad, 1976 (in Russian).Google Scholar
  102. [7]
    Vorob’ev, N.N.: Game theory, Springer, 1977 (translated from the Russian).Google Scholar
  103. [8]
    Aubin, J.P.: Mathematical methods of game and economic theory, North-Holland, 1979 (translated from the French).Google Scholar
  104. [9]
    The theory of games. Annotated index of publications 1969–1974, Leningrad, 1980 (in Russian).Google Scholar
  105. [10]
    Rosenmüller, J.: The theory of games and markets, North-Holland, 1981.Google Scholar
  106. [11]
    Owen, G.: Game theory, Acad. Press, 1982.Google Scholar
  107. [12]
    Shubik, M.: Game theory in the social sciences, M.I.T., 1982.Google Scholar
  108. [13]
    Shubik, M.: A game-theoretic approach to political economy, M.I.T., 1984.Google Scholar
  109. [14]
    Vorob’ev, N.N.: Foundations of game theory, Leningrad, 1984 (in Russian).Google Scholar
  110. [A1]
    Isaacs, R.: Differential games, Wiley, 1965.Google Scholar
  111. [A2]
    Basar, T. and Olsder, G.J.: Dynamic noncooperative game theory, Acad. Press, 1982.Google Scholar
  112. [A3]
    Krasovskiĭ, N. and Subbotin, A.I.: Game theoretical control problems, Springer, 1988 (translated from the Russian).Google Scholar
  113. [A4]
    Shubik, M. (ed.): The mathematics of conflict, North-Holland, 1983.Google Scholar
  114. [A5]
    Driessen, T.: Cooperative games, solutions and applications, Kluwer, 1988.Google Scholar
  115. [A6]
    Damme, E. van: Stability and perfection of Nash equilibria, Springer, 1987.Google Scholar
  116. [A7]
    Lemke, C.E. and Howson, J.T., jr.: ‘Equilibrium points of bimatrix games’, SIAM J. Appl. Math. 12 (1964), 413–423.MathSciNetMATHGoogle Scholar
  117. [A8]
    Scarf, H.E.: The computation of economic equilibria, Yale Univ. Press, 1973.Google Scholar
  118. [A9]
    Szép, J. and Forgö, F.: Introduction to the theory of games, Reidel, 1985.Google Scholar
  119. [1]
    Sarmanov, I.O.: Trudy Gidrologichesk. Inst. 162 (1969), 37–61.Google Scholar
  120. [2]
    Myller-Lebedeff, W.: ‘Die Theorie der Integralgleichungen in Anwendung auf einige Reihenentwicklungen’, Math. Ann. 64 (1907), 388–416.MathSciNetMATHGoogle Scholar
  121. [A1]
    Johnson N.L. and Kotz, S.: Distributions in statistics, 2. Continuous multivariate distributions, Wiley, 1972.Google Scholar
  122. [1]
    Pagurova, V.I.: Tables of the incomplete gamma-function, Moscow, 1963 (in Russian).Google Scholar
  123. [2]
    Pearson, K. (ed.): Tables of the incomplete gamma function, Cambridge Univ. Press, 1957.Google Scholar
  124. [A1]
    Johnson, N.L. and Kotz, S.: Distributions in statistics, 1. Continuous univariate distributions, Wiley, 1970.Google Scholar
  125. [A2]
    Comrie, L.J.: Chambers’s six-figure mathematical tables, II, Chambers, 1949.Google Scholar
  126. [1]
    Whittaker, E.T. and Watson, G.N.: A course of modern analysis, Cambridge Univ. Press, 1952.Google Scholar
  127. [2]
    Bateman, H. and Erdélyi, A.: Higher transcendental functions. The Gamma function. The hypergeometric function. Legendre functions, 1, McGraw-Hill, 1953.Google Scholar
  128. [3]
    Bourbaki, N.: Elements of mathematics. Functions of a real variable, Addison-Wesley, 1976 (translated from the French).Google Scholar
  129. [4]
    Handbook of mathematical libraries: Math. anal., functions, limits, series, continued fractions, Moscow, 1961 (in Russian).Google Scholar
  130. [5]
    Nielsen, N.: Handbuch der Theorie der Gammafunktion, Chelsea, reprint, 1965.Google Scholar
  131. [6]
    Sonin, N.Ya.: Studies on cylinder functions and special polynomials, Moscow, 1954 (in Russian).Google Scholar
  132. [7]
    Voronoĭ, G.F.: Collected works, Vol. 2, Kiev, 1952, pp. 239–368 (in Russian).Google Scholar
  133. [8]
    Jahnke, E. and Emde, F.: Tables of functions with formulae and curves, Dover, reprint, 1945 (translated from the German).Google Scholar
  134. [9]
    Angot, A.: Compléments de mathématiques. A l’usage des ingénieurs de l’electrotechnique et des télécommunications, C.N.E.T., 1957.Google Scholar
  135. [A1]
    Artin, E.: The gamma function, Holt, Rinehart & Winston, 1964.Google Scholar
  136. [A2]
    Askey, R.: ‘The q-Gamma and q-Beta functions’, Appl. Anal. 8 (1978), 125–141.MathSciNetMATHGoogle Scholar
  137. [1]
    Gårding, L.: ‘Dirichlet’s problem for linear elliptic partial differential equations’, Math. Scand. 1 (1953), 55–72.MathSciNetMATHGoogle Scholar
  138. [2]
    Yosida, K.: Functional analysis, Springer, 1980.Google Scholar
  139. [A1]
    Hörmander, L.: The analysis of linear partial differential operators, 3, Springer, 1985.Google Scholar
  140. [1]
    Serrin, J.: ‘Mathematical principles of classical fluid mechanics’ in S. Flügge (ed.): Handbuch der Physik, Vol. 8/1, Springer, 1959, pp. 125–263.Google Scholar
  141. [2]
    Sedov, L.I.: A course in continuum mechanics, 1–4, Wolters-Noordhoff, 1971–1972 (translated from the Russian).Google Scholar
  142. [3]
    Landau, L.D. and Lifshits, E.M.: Mechanics, Pergamon, 1965 (translated from the Russian).Google Scholar
  143. [4]
    Kochin, N.E., Kibel’, I.A. and Roze, N.V.: Theoretical hydrodynamics, Interscience, 1964 (translated from the Russian).Google Scholar
  144. [5]
    Branover, G.G. and Tsinober, A.M.: Magnetic hydrodynamics of incompressible media, Moscow, 1970 (in Russian).Google Scholar
  145. [6]
    Rozhdestvenskiĭ, B.L. and Yanenko, N.N.: Systems of quasilinear equations and their applications to gas dynamics, Amer. Math. Soc., 1983 (translated from the Russian).Google Scholar
  146. [A1]
    Courant, R. and Friedrichs, K.O.: Supersonic flow and shock waves, Interscience, 1948.Google Scholar
  147. [A2]
    Liepmann, H.W. and Roshko, A.: Elements of gas dynamics, Wiley, 1957.Google Scholar
  148. [A3]
    Sears, W.R. (ed.): General theory of high speed aerodynamics, Princeton Univ. Press, 1954.Google Scholar
  149. [A4]
    Cercignani, G: The Boltzmann equation and its applications, Springer, 1988.Google Scholar
  150. [1]
    Richtnyer, R.D. and Morton, K.: Difference methods for initial-value problems, Wiley (Interscience), 1967.Google Scholar
  151. [2]
    Godunov, S.K. and Ryaben’kiĭ, V.S.: Theory of difference schemes, North-Holland, 1964 (translated from the Russian).Google Scholar
  152. [3]
    Rozhdestvenskiĭ, B.L. and Yanenko, N.N.: Systems of quasilinear equations and their applications to gas dynamics, Amer. Math. Soc., 1983 (translated from the Russian).Google Scholar
  153. [4]
    Samarskiĭ, A.A.: Theorie der Differenzverfahren, Akad. Verlagsgesell. Geest u. Portig K.-D., 1984 (translated from the Russian).Google Scholar
  154. [5]
    Zhukov, A.I.: ‘Application of the method of characteristics to the numerical solution of one-dimensional problems of gas dynamics’, Trudy Mat. Inst. Steklov. 58 (1960) (in Russian).Google Scholar
  155. [6]
    Harlow, F.: Numerical methods in hydrodynamics, Moscow, 1967, pp. 316-342 (in Russian; translated from the English).Google Scholar
  156. [7]
    Dorodnitsyn, A.A.: ‘On a method for the numerical solution of certain nonlinear problems in aerodynamics’, in Proc. 3-th All-Union Math. Congress, Vol. 3, Moscow, 1958, pp. 447–453 (in Russian).Google Scholar
  157. [8]
    Belotserkovskiĭ, O.M.: ‘Numerical methods for solving the stationary equations of gas dynamics’, in Numerical methods for solving problems in the mechanics of continuous media, Moscow, 1969, pp. 101-213 (in Russian).Google Scholar
  158. [9]
    Yanenko, N.N., Anuchina, N.N., Petrenko, V.E. and Shokin, Yu.I.: ‘Methods for the calculations of problems in gas dynamics involving large derivations’, Chisl. Mat. Mekh. Sploshn. Sred. 1 (1970), 40–62 (in Russian).Google Scholar
  159. [10]
    Yanenko, N.N.: The method of fractional steps; the solution of problems of mathematical physics in several variables, Springer, 1971 (translated from the Russian).Google Scholar
  160. [11]
    Samarskiĭ, A.A. and Popov, Yu.P.: Difference schemes of gas dynamics, Moscow, 1975 (in Russian).Google Scholar
  161. [12]
    Godunov, S.K., Zabrodin, A.V. and Prokopov, G.P.: ‘A computational scheme for two-dimensional non-stationary problems of gas dynamics and calculation of the flow from a shock wave approaching a stationary state’, USSR Comput. Math. Math. Phys. 1, no. 6 (1961), 1187–1219. (Zh. Vychisl. Mat. i Mat. Fiz. 1, no. 6 (1961), 1020-1050).MathSciNetMATHGoogle Scholar
  162. [A1]
    Baker, A.J.: Finite element computational fluid mechanics, Hemisphere & McGraw-Hill, 1983.Google Scholar
  163. [A2]
    Holt, M.: Numerical methods in fluid dynamics, Springer, 1984.Google Scholar
  164. [A3]
    McCormick, S.F.: Multigrid methods, SIAM, 1987.Google Scholar
  165. [A4]
    Peyret, R. and Taylor, T.D.: Computational methods for fluid flow, Springer, 1983.Google Scholar
  166. [A5]
    Temam, R.: Numerical analysis, North-Holland, 1973.Google Scholar
  167. [1]
    Chaplygin, S.A.: ‘On gas jets’, NACA Techn. Mem 1063 (1944). (Nauchn. Tr. Moskov. Univ. Mat. Fiz. 21 (1904), 1-121)Google Scholar
  168. [2]
    Shi-i, Bai: The theory of jets, Moscow, 1960 (in Russian; translated from the English).Google Scholar
  169. [A1]
    Kuo, Y.H. and Sears, W.R.: ‘Plane subsonic and transonic potential flows’, in W.R. Sears (ed.): General theory of high speed aerodynamics, Princeton Univ. Press, 1954, pp. 490-582.Google Scholar
  170. [A2]
    Ferri, A.:’ supersonic flows with shock waves’, in W.R. Sears (ed.): General theory of high speed aerodynamics, Princeton Univ. Press, 1954, pp. 670-748.Google Scholar
  171. [A3]
    Courant, R. and Friedrichs, K.O.: Supersonic flow and shock waves, Interscience, 1948.Google Scholar
  172. [A4]
    Hill, R. and Pack, D.C.: ‘An investigation, by the method of characteristics, of the lateral expansion of the gases behind a detonating slab of explosive’, Proc. R. Soc. A 191 (1947), 524.MathSciNetMATHGoogle Scholar
  173. [A5]
    Bers, L.: Mathematical aspects of subsonic and transonic gas dynamics, Wiley, 1958.Google Scholar
  174. [1]
    Gâteaux, R.: ‘Sur les fonctionnelles continues et les fonctionnelles analytiques’, C.R. Acad Sci. Paris Sér. I Math. 157 (1913), 325–327.MATHGoogle Scholar
  175. [2]
    Kolmogorov, A.N. and Fomin, S.V.: Elements of the theory of functions and functional analysis, 1–2, Graylock, 1957–1961 (translated from the Russian).Google Scholar
  176. [3]
    Ljusternik, L.A. [L.A. Lyusternik] and Sobolew, W.I. [V.I. Sobolev]: Elemente der Funktionalanalysis, H. Deutsch, Frankfurt a. M., 1979 (translated from the Russian).Google Scholar
  177. [4]
    Averbukh, V.I. and Smolyanov, O.G.: ‘Theory of differentiation in linear topological spaces’, Russian Math. Surveys 22, no. 6 (1967), 201–258. (Uspekhi Mat. Nauk 22, no. 6 (1967), 201-260)Google Scholar
  178. [A1]
    Berger, M.S.: Nonlinearity and functional analysis, Acad. Press, 1977.Google Scholar
  179. [1]
    Ljusternik, L.A. [L.A. Lyusternik] and Sobolew, W.I. [V.I. Sobolev]: Elemente der Funktionalanalysis, H. Deutsch, Frankfurt a.M., 1979 (translated from the Russian).Google Scholar
  180. [2]
    Kolmogorov, A.N. and Fomin, S.V.: Elements of the theory of functions and functional analysis, 1–2, Graylock, 1957–1961 (translated from the Russian).Google Scholar
  181. [A1]
    Berger, M.S.: Nonlinearity and functional analysis, Acad. Press, 1977.Google Scholar
  182. [1A]
    Gâteaux, R.: ‘Sur les fonctionnelles continues et les fonctionnelles analytiques’, C.R. Acad Sci. Paris Sér. I Math. 157 (1913), 325–327.MATHGoogle Scholar
  183. [IB]
    Gâteaux, R.: ‘Fonctions d’une infinités des variables indépendantes’, Bull. Soc. Math. France 47 (1919), 70–96.MathSciNetGoogle Scholar
  184. [2]
    Lévy, P.: Leçons d’analyse fonctionnelle, Gauthier-Villars, 1922.Google Scholar
  185. [3]
    Lévy, P.: Problèmes concrets d’analyse fonctionelle, Gauthier-Villars, 1951.Google Scholar
  186. [A1]
    Berger, M.S.: Nonlinearity and functional analysis, Acad. Press, 1977.Google Scholar
  187. [1]
    Bogolyubov, N.N. and Shirkov, D.V.: Introduction to the theory of quantized fields, Interscience, 1959 (translated from the Russian).Google Scholar
  188. [A1]
    Moriyasu, K.: An elementary primer for gauge theory, World Scientific, 1983.Google Scholar
  189. [A2]
    O’Raifertaigh, L.: Group structure of gauge theories, Cambridge Univ. Press, 1986.Google Scholar
  190. [A3]
    Mayer, M.E.: ‘Geometric aspects of gauge theory’, in L.P. Horowitz and Y. Ne’eman (eds.): Proc. Vll-Colloq. Group Theoretical Methods in Physics, Israel Physical Society & A. Hilger, 1980, pp. 80-99.Google Scholar
  191. [A4]
    Blaine Lawson, Jr., M.: The theory of gauge fields in four dimensions, Amer. Math. Soc., 1985.Google Scholar
  192. [A5]
    Atiyah, M.F.: Geometry of Yang-Mills fields, Accad. Naz. dei Lincei, 1979.Google Scholar
  193. [1]
    Gauss, C.F.: Werke, Vol. 8, K. Gesellschaft Wissensch. Göttingen, 1900.Google Scholar
  194. [2]
    Bonnet, O.: J. École Polytechnique 19 (1848), 1–146.Google Scholar
  195. [3]
    Cohn-Vossen, S.E.: Some problems of differential geometry in the large, Moscow, 1959 (in Russian).Google Scholar
  196. [4]
    Sharafutdinov, V.A.: ‘Relative Euler class and the Gauss-Bonnet theorem’, Siberian Math. J. 14, no. 6 (1973), 930–940. (Sibirsk Mat. Zh. 14, no. 6, 1321-1635)MathSciNetGoogle Scholar
  197. [5]
    Allendörfer, C.B. and Weil, A.: ‘The Gauss—Bonnet theorem for Riemannian polyhedra’, Trans. Amer. Math. Soc. 53 (1943), 101–129.MathSciNetMATHGoogle Scholar
  198. [6]
    Eells, J.: ‘A generalization of the Gauss—Bonnet theorem’, Trans. Amer. Math. Soc. 92 (1959), 142–153.MathSciNetMATHGoogle Scholar
  199. [7]
    Pontryagin, L.S.: ‘On a connection between homologies and homotopies’, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 193–200 (in Russian).MathSciNetMATHGoogle Scholar
  200. [A1]
    Spivak, M.: A comprehensive introduction to differential geometry, 5, Publish or Perish, 1975.Google Scholar
  201. [A1]
    Knopp, K.: Theorie und Anwendung der unendlichen Reihen, Springer, 1964.Google Scholar
  202. [1]
    Zhelobenko, D.P.: Compact Lie groups and their representations. Amer. Math. Soc., 1973 (translated from the Russian).Google Scholar
  203. [1]
    Berezin, I.S. and Zhidkov, N.P.: Computing methods, 1, Pergamon, 1973 (translated from the Russian).Google Scholar
  204. [2]
    Bakhvalov, N.S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  205. [A1]
    Davis, P.J.: Interpolation and approximation, Dover, reprint, 1975.Google Scholar
  206. [A2]
    Hildebrand, F.B.: Introduction to numerical analysis, McGraw-Hill, 1974.Google Scholar
  207. [A3]
    Steffensen, J.F.: Interpolation, Chelsea, reprint, 1950.Google Scholar
  208. [1]
    Gauss, C.F.: ‘Theoria motus corporum coellestium’, in Werke, Vol. 7, 1809. English translation: C.H. Davis (ed.), Dover, 1963.Google Scholar
  209. [2]
    Laplace, P.S.: Théorie analytique des probabilités, Paris, 1812.Google Scholar
  210. [3]
    Todhunter, I.: A history of the mathematical theory of probability, Chelsea, reprint, 1949.Google Scholar
  211. [1]
    Gauss, C.F.: ‘Theoria motus corporum coelestium’, in Werke, Vol. 7, K. Gesellschaft Wissenschaft. Göttingen, 1809. English translation: C.H. Davis(ed.), Dover, 1963.Google Scholar
  212. [2]
    Poincaré, H.: Calcul des probabilités, Gauthier-Villars, 1912.Google Scholar
  213. [A1]
    Manin, Yu.: ‘Algebraic curves over fields with differentiation’, Transi. Amer. Math. Soc. 37 (1964), 59–78. (Izv. Akad. Nauk. SSSR Ser. Mat. 22 (1958), 737-756)MATHGoogle Scholar
  214. [A2]
    Katz, N.M.: ‘On the differential equations satisfied by period matrices’, Publ. Math. IHES 35 (1968), 71–106.MATHGoogle Scholar
  215. [A3]
    Grothendieck, A.: ‘On the de Rham cohomology of algebraic varieties’, Publ. Math. IHES 29 (1966), 351–359.MATHGoogle Scholar
  216. [A4]
    Katz, N.M. and Oda, T.: ‘On the differentiation of de Rham cohomology classes with respect to parameters’, J. Math. Kyoto Univ. 8″ (1968), 199–213.MathSciNetMATHGoogle Scholar
  217. [A5]
    Nilsson, N.:’ some growth and ramification properties of certain integrals on algebraic manifolds’, Arkiv för Mat. 5 (1963-1965), 527-540.Google Scholar
  218. [A6]
    Deligne, P.: Equations différentielles à points singuliers réguliers, Lecture notes in math., 163, Springer, 1970.Google Scholar
  219. [A7]
    Katz, N.M.: ‘The regularity theorem in algebraic geometry’, in Actes Congres International Mathématiciens Nice, 1970, Vol. 1, Gauthier-Villars, 1971, pp. 437–443.Google Scholar
  220. [A8]
    Griffiths, P.A.: ‘Periods of integrals on algebraic manifolds, I, II’, Amer. J. Math. 90 (1968), 568–626; 805-865.MathSciNetMATHGoogle Scholar
  221. [A9]
    Grothendieck, A.: Letter to J.-P. Serre, 5.10.1964.Google Scholar
  222. [A10]
    Brieskorn, E.: ‘Die Monodromie von isolierten Singularitäten von Hyperflächen’, Manuscr. Math. 2 (1970), 103–161.MathSciNetMATHGoogle Scholar
  223. [A11]
    Katz, N.M.: ‘Nilpotent connections and the monodromy theorem. Applications of a result of Turrittin’, Publ. Math. IHES 39 (1971), 175–232.Google Scholar
  224. [A12]
    Landman, A.: On the Picard—Lefschetz formula for algebraic manifolds acquiring general singularities, Berkeley, 1967. Thesis.Google Scholar
  225. [A13]
    Clemens, C.H.: ‘Picard—Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities’, Trans. Amer. Math. Soc. 136 (1969), 93–108.MathSciNetMATHGoogle Scholar
  226. [A14]
    , D.T.: ‘The geometry of the monodromy theorem’, in K.G. Ramanathan (ed.): C.P. Ramanujam, a tribute, Tata IFR Studies in Math., Vol. 8, Springer, 1978.Google Scholar
  227. [A15]
    Deligne, P.: ‘Théorème de Lefschetz et critères de dégénérescence de suites spectrales’, Publ. Math. IHES 35 (1968), 107–126.MATHGoogle Scholar
  228. [A16]
    Schmid, W.: ‘Variation of Hodge structure: the singularities of the period mapping’, Invent. Math. 22 (1973), 211–319.MathSciNetMATHGoogle Scholar
  229. [A17]
    Greuel, G.-M.: ‘Der Gauss-Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten’, Math. Ann. 214 (1975), 235–266.MathSciNetMATHGoogle Scholar
  230. [A18]
    Deligne, P.: ‘Le formalisme des cycles évanescents’, in A. Grothendieck, P. Deligne and N.M. Katz (eds.): Groupes de monodromie en géométrie algébrique. SGA VII 2 1967/69. Exp. XIII, Lecture notes in math., Vol. 340, Springer, 1973.Google Scholar
  231. [A19]
    Pham, F.: Singularités des systèmes différentiels de Gauss—Manin, Birkhäuser, 1979.Google Scholar
  232. [A20]
    Scherk, J. and Steenbrink, J.H.M.: ‘On the mixed Hodge structure on the cohomology of the Milnor fibre’, Math. Ann. 271 (1985), 641–665.MathSciNetMATHGoogle Scholar
  233. [A21]
    Varchenko, A.N.: ‘Asymptotic Hodge structure in the vanishing cohomology’, Math USSR Izv. 18 (1982), 469–512. (Izv. Akad. Nauk SSSR 45, no. 3 (1981), 540-591; 688)MATHGoogle Scholar
  234. [A22]
    Saito, M.: ‘Gauss—Manin system and mixed Hodge structure’, Proc. Japan Acad. Ser A 58 (1982), 29–32.MATHGoogle Scholar
  235. [1]
    Gauss, C.F.: ‘Beiträge zur Theorie der algebraischen Gleichungen’, in Werke, Vol. 3, K. Gesellschaft Wissenschaft. Göttingen, Göttingen, 1876, pp. 71-102.Google Scholar
  236. [2]
    Kurosh, A.G.: Higher algebra, Mir, 1972 (translated from the Russian).Google Scholar
  237. [3]
    Faddeev, D.K. and Faddeeva, V.N.: Computational methods of linear algebra, Freeman, 1963 (translated from the Russian).Google Scholar
  238. [4]
    Chernikov, S.N.: Lineare Ungleichungen, Deutsch. Verlag Wissenschaft., 1971 (translated from the Russian).Google Scholar
  239. [A1]
    Golub, G.H. and Loan, C.F. van: Matrix computations, North Oxford Acad., 1983.Google Scholar
  240. [A2]
    Wilkinson, J.H.: The algebraic eigenvalue problem, Clarendon Press, 1965.Google Scholar
  241. [A3]
    Strang, G.: Linear algebra and its application, Acad. Press, 1976.Google Scholar
  242. [A4]
    Dongarra, H., Bunch, J.R., Moler, C.B. and Stewart, G.W.: LINPACK users guide, SIAM, 1978.Google Scholar
  243. [A5]
    Wilkinson, J.H. and Reinsch, C.: Handbook for automatic computation, 2. Linear algebra, Springer, 1971.Google Scholar
  244. [A6]
    Bussinger, P.A.: ‘Monotoring the numerical stability of Gaussian elimination’, Numer. Math. 16 (1971), 360–361.MathSciNetGoogle Scholar
  245. [1]
    Gauss, C.F.: Disquisitions Arithmeticae, Yale Univ. Press, 1966 (translated from the Latin).Google Scholar
  246. [A1]
    Hardy, G.H. and Wright, E.M.: An introduction to the theory of numbers, Clarendon Press, 1960, Chapt. XV.Google Scholar
  247. [1]
    Gauss, C.F.: ‘Ueber ein allgemeines Grundgesetz der Mechanik’, J. Reine Angew. Math. 4 (1829), 232–235.MATHGoogle Scholar
  248. [2]
    Bolotov, E.A.: ‘On Gauss’ principle’, Izv. Fiz.-Mat. Obshch. Kazan Univ. (2) 21, no. 3 (1916), 99–152 (in Russian).Google Scholar
  249. [3]
    Chetaev, N.G.: ‘On Gauss’ principle’, Izv. Fiz.-Mat. Obshch. Kazan Univ. (3) 6 (1932–1933), 68-71 (in Russian).Google Scholar
  250. [4]
    Rumyantsev, V.V.: ‘On some variational principles in mechanics of continuous media’, J. Appl. Math. Mech. 37 (1973), 917–926. (Priklad. Mat. Mekh. 37, no. 6 (1973), 963-973)MathSciNetMATHGoogle Scholar
  251. [A1]
    Arnol’d, V.I.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).Google Scholar
  252. [A2]
    Whittaker, E.T.: Analytical dynamics of particles and rigid bodies, Dover, reprint, 1944.Google Scholar
  253. [A3]
    Lindsay, R.B. and Margenau, H.: Foundations of physics, Dover, reprint, 1957.Google Scholar
  254. [1]
    Gauss, C.F.: ‘Methodus nova integralium valores per approximationem inveniendi’, in Werke, Vol. 3, K. Gesellschaft Wissenschaft. Göttingen, 1886, pp. 163-196.Google Scholar
  255. [2]
    Krylov, N.M.: Approximate calculation of integrals, Macmillan, 1962 (translated from the Russian).Google Scholar
  256. [3]
    Krylov, V.I. and Shul’gina, L.T.: Handbook on numerical integration, Moscow, 1966 (in Russian).Google Scholar
  257. [4]
    Bakhvalov, N.S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  258. [5]
    Stroud, A.H. and Secrest, D.: Gaussian quadrature formulas, Prentice-Hall, 1966.Google Scholar
  259. [6]
    A standard program for the computation of single integrals of quadratures of Gauss’ type, Moscow, 1967 (in Russian).Google Scholar
  260. [A1]
    Hilderbrand, F.B.: Introduction to numerical analysis, McGraw-Hill, 1974.Google Scholar
  261. [A2]
    Abramowitz, M. and Stegun, I.A.: Handbook of mathematical functions, Appl. Math. Series, 25, Nat. Bur. Stand. & Dover, 1970.Google Scholar
  262. [A3]
    Christoffel, E.B.: ‘Ueber die Gausssche Quadratur und eine Verallgemeinerung derselben’, J. Reine Angew. Math. 55 (1858), 81–82.Google Scholar
  263. [A4]
    Davis, P.J. and Rabinowitz, P.: Methods of numerical integration, Acad. Press, 1984.Google Scholar
  264. [A5]
    Piessens, R., et al.: Quadpack, Springer, 1983.Google Scholar
  265. [1]
    Gauss, C.F.: Disquisitiones Arithmeticae, Yale Univ. Press, 1966 (translated from the Latin).Google Scholar
  266. [2]
    Winogradow, I.M. [I.M. Vinogradov]: Elemente der Zahlentheorie, Oldenburg, 1956 (translated from the Russian).Google Scholar
  267. [3]
    Hasse, H.: Vorlesungen über Zahlentheorie, Springer, 1950.Google Scholar
  268. [1]
    Kurosh, A.G.: Lectures on general algebra, Chelsea, 1963 (translated from the Russian).Google Scholar
  269. [1]
    Gauss, C.F.: Disquisitiones Arithmeticae, Yale Univ. Press, 1966 (translated from the Latin).Google Scholar
  270. [2]
    Vinogradov, I.M.: The method of trigonometical sums in the theory of numbers, Interscience, 1954 (translated from the Russian).Google Scholar
  271. [3]
    Davenport, H.: Multiplicative number theory, Springer, 1980.Google Scholar
  272. [4]
    Prachar, K.: Primzahlverteilung, Springer, 1957.Google Scholar
  273. [5]
    Hasse, H.: Vorlesungen über Zahlentheorie, Springer, 1950.Google Scholar
  274. [1]
    Gauss, C.F.: Allgemeine Flächentheorie, W. Engelmann, Leipzig, 1900 (translated from the Latin).Google Scholar
  275. [2]
    Blaschke, W.: Einführung in die Differentialgeometrie, Springer, 1950.Google Scholar
  276. [3]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grosse, Springer, 1968.Google Scholar
  277. [4]
    Eisenhart, L.P.: Riemannian geometry, Princeton Univ. Press, 1949.Google Scholar
  278. [5]
    Sternberg, S.: Lectures on differential geometry, Prentice-Hall, 1964.Google Scholar
  279. [6]
    Aleksandrov, A.D.: Die innere Geometrie der konvexen Flächen, Akademie-Verlag, 1955 (translated from the Russian).Google Scholar
  280. [7]
    Pogorelov, A.V.: Extrinsic geometry of convex surfaces, Amer. Math. Soc., 1973 (translated from the Russian).Google Scholar
  281. [A1]
    Berger, M. and Gostiaux, B.: Differential geometry, Springer, 1988 (translated from the French).Google Scholar
  282. [A2]
    Dombrowski, P.: ‘150 years after Gauss’, Astérisque 62 (1979).Google Scholar
  283. [A3]
    Do Carmo, M.: Differential geometry of curves and surfaces, Prentice Hall, 1976.Google Scholar
  284. [A4]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 2, Interscience, 1969.Google Scholar
  285. [A5]
    Spivak, M.: Differential geometry, 1–5, Publish or Perish, 1979.Google Scholar
  286. [1]
    Hille, E. and Phillips, R.: Functional analysis and semigroups, Amer. Math. Soc., 1957.Google Scholar
  287. [2]
    Ditkin, V.A. and Prudnkov, A.P.: ‘Integral transforms’, Itogi Nauk. Ser. Mat. Mat. Anal. (1966), 7-82 (in Russian).Google Scholar
  288. [A1]
    Sneddon, I.N.: The use of integral transforms, McGraw-Hill, 1972.Google Scholar
  289. [1]
    Gauss, C.F.: ‘Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehung-und Abstössungs-Kräfte’, in Werke, Vol. 5, K. Gesellschaft Wissenschaft. Göttingen, 1877, pp. 195-242.Google Scholar
  290. [2]
    Landkof, N.S. [N.S. Landkov]: Foundations of modern potential theory, Springer, 1972 (translated from the Russian).Google Scholar
  291. [3]
    Brelot, E.: Eléments de la théorie classique du potentiel, Sorbonne Univ. Paris, 1959.Google Scholar
  292. [A1]
    Doob, J.L.: Classical potential theory and its probabilistic counterpart, Springer, 1984.Google Scholar
  293. [1]
    Wozencraft, J. and Jacobs, I.: Theoretical foundations of communication techniques, Moscow, 1969 (in Russian; translated from the English).Google Scholar
  294. [1]
    Gauss, C.F.: Allgemeine Flächentheorie, W. Engelmann, 1900 (translated from the Latin).Google Scholar
  295. [2]
    Blaschke, W. and Reichardt, H.: Einführung in die Differentialgeometrie, Springer, 1960.Google Scholar
  296. [1]
    Doob, J.L.: Stochastic processes, Chapman and Hall, 1953.Google Scholar
  297. [2]
    Ibragimov, I.A. and Rozanov, Yu.A.: Gaussian random processes, Springer, 1978 (translated from the Russian).Google Scholar
  298. [3]
    Cramér, H. and Leadbetter, M.R.: Stationary and related stochastic processes, Wiley, 1967.Google Scholar
  299. [4]
    Itô, K.: ‘Multiple Wiener integral’, J. Math. Soc. Japan 3, no. 1 (1951), 157–169.MathSciNetMATHGoogle Scholar
  300. [5]
    Itô, K.: ‘Complex multiple Wiener integral’, Japan J. Math. 22 (1952), 63–86.MATHGoogle Scholar
  301. [A1]
    Neveu, J.: Processus aléatoires Gaussiens, Presses Univ. Montréal, 1968.Google Scholar
  302. [A2]
    Fernique, X.: ‘Fonctions aléatores gaussiennes, les résultatsGoogle Scholar
  303. [1]
    Ditkin, V.A. and Prudnikov, A.P.: ‘Operational calculus’, Progress in Math. 1 (1968), 1–75. (Itogi Nauk. Ser. Mat. Anal. 1996 (1967), 7-82)Google Scholar
  304. [A1]
    Butzer, P.L., Stens, R.L. and Wehrens, M.: ‘The continuous Legendre transform, its inverse transform, and applications,’, Internat J. Math. Sci. 3 (1980), 47–67.MathSciNetMATHGoogle Scholar
  305. [A2]
    Koornwinder, T.H. and Walter, G.G.: ‘The finite continuous Jacobi transform and its inverse’, J. Approx. Theory (To appear).Google Scholar
  306. [1]
    Gel’fand, I.M.: ‘Normierte Ringe’, Mat. Sb. 9 (51), no. 1 (1941), 3–24.Google Scholar
  307. [A1]
    Yosida, K.: Functional analysis, Springer, 1980.Google Scholar
  308. [A2]
    Rudin, W.: Functional analysis, McGraw-Hill, 1979.Google Scholar
  309. [1]
    Gellerstedt, S.: ‘Quelques problèmes mixtes pour l’équation y m z xx +zyy =0’, Ark. Mat. Astr. Fysik 26A, no. 3 (1937), 1–32.Google Scholar
  310. [2]
    Tricomi, F.G.: Integral equations, Interscience, 1957.Google Scholar
  311. [3]
    Smirnov, M.M.: Equations of mixed type, Amer. Math. Soc., 1978 (translated from the Russian).Google Scholar
  312. [A1]
    Bers, L.: Mathematical aspects of subsonic and transonic gas dynamics, Wiley, 1958.Google Scholar
  313. [1]
    Shmidt, O.Yu.: Abstract theory of groups, Freeman, 1966 (translated from the Russian).Google Scholar
  314. [2]
    Waerden, B.L. van der: Algebra, 1–2, Springer, 1967–1971 (translated from the German).Google Scholar
  315. [3]
    Kurosh, A.G.: Lectures on general algebra, Chelsea, 1963 (translated from the Russian).Google Scholar
  316. [4]
    Kurosh, A.G.: General algebra. Lectures for the academic year 1969/70, Moscow, 1974 (in Russian).Google Scholar
  317. [5]
    Mal’tsev, A.I.: Algebraic systems, Springer, 1973 (translated from the Russian).Google Scholar
  318. [6]
    Suzuki, M.: Structure of a group and the structure of its lattice of subgroups, Springer, 1956.Google Scholar
  319. [A1]
    Burnside, W.: Theory of groups of finite order, Cambridge Univ. Press, 1897.Google Scholar
  320. [A2]
    Schoenflies, A.: Kristallsysteme und Kristallstruktur, Teubner, 1891.Google Scholar
  321. [1]
    Artin, E.: Geometric algebra, Interscience, 1957.Google Scholar
  322. [2]
    Dieudonné, J.A.: La géométrie des groups classiques, Springer, 1955.Google Scholar
  323. [3]
    Bass, H.: Algebraic K-theory, Benjamin, 1968.Google Scholar
  324. [1]
    Mumford, D.: Geometric invariant theory, Springer, 1965.Google Scholar
  325. [2]
    Lang, S.: Introduction to differentiable manifolds, Interscience, 1967, App. III.Google Scholar
  326. [3]
    Arnol’d, V.I.: Chapitres supplémentaires de la théorie des équations différentielles ordinaires. Mir, 1980 (translated from the Russian).Google Scholar
  327. [4]
    Eells, J. and McAlpin, J.: ‘An approximate Morse—Sard theorem’, J. Math. Mech. 17, no. 11 (1968), 1055–1064.MathSciNetMATHGoogle Scholar
  328. [5]
    Quinn, F.: ‘Transversal approximation on Banach manifolds’, in Global analysis, Proc. Symp. Pure Math., Vol. 15, Amer. Math. Soc., 1970, pp. 213-222.Google Scholar
  329. [6]
    Gutierrez, C: ‘Structural stability of flows on the torus with a cross-cap’, Trans. Amer. Math. Soc. 241 (1978), 311–320.MathSciNetMATHGoogle Scholar
  330. [7]
    Gutierrez, C.: ‘Smooth nonorientable nontrivial recurrence on two-manifolds’, J. Differential Equations 29, no. 3 (1978), 388–395.MathSciNetMATHGoogle Scholar
  331. [8]
    Kurland, H. and Robbin, J.: ‘Infinite codimension and transversality’, in Dynamical systems, Warwick 1974, Lecture notes in math., Vol. 468, Springer, 1975, pp. 135-150.Google Scholar
  332. [9]
    Takens, F.: ‘Tolerance stability’, in Dynamical systems, Warwick 1974, Lecture notes in math., Vol. 468, Springer, 1975, pp. 293–304.MathSciNetGoogle Scholar
  333. [10]
    Dobrynskiĭ, V.A. and Sharkovskiĭ, A.N.: ‘Typicalness of dynamical systems almost all paths of which are stable under permanently acting perturbations’, Soviet Math. Dokl. 14, no. 4 (1973), 997–1000. (Dokl. Akad Nauk SSSR 211, no. 2 (1973), 273-276)Google Scholar
  334. [11A]
    Arnol’d, V.I.: ‘Small denominators, I. Mapping the circle onto itself’, Izv. Akad Nauk SSSR Ser. Mat. 25, no. 1 (1961), 21–86 (in Russian).MathSciNetGoogle Scholar
  335. [11B]
    Arnol’d, V.I.: ‘Correction to’ small denominators, I. Mapping the circle onto itself’, Izv. Akad Nauk SSSR Ser. Mat. 28, no. 2 (1964), 479–480 (in Russian).MathSciNetGoogle Scholar
  336. [12]
    Wall, C.: ‘Geometric properties of generic differentiable manifolds’, in Geometry and topology, Lecture notes in math., Vol. 597, Springer, 1977, pp. 707–774.Google Scholar
  337. [13]
    Klingenberg, W.: Lectures on closed geodesics, Springer, 1978.Google Scholar
  338. [14]
    Arnol’d, V.I., Varchenko, A.N. and Gusein-Zade, S.M. [S.M. Khuseĭn-Zade]: Singularities of differentiable maps, 1, Birkhäuser, 1985 (translated from the Russian).Google Scholar
  339. [15]
    Arnol’d, V.I., Afraĭmovich, V.S., Ilyashenko, Yu.S. and Shil’nikov, L.P.: Dynamical systems, 5, Springer, forthcoming (translated from the Russian).Google Scholar
  340. [A1]
    Thom, R.: ‘Un lemma sur les applications différentiable’, Bol. Soc. Math. Mexico 1, no. 2 (1956), 59–71.MathSciNetMATHGoogle Scholar
  341. [A2]
    Boardman, J.M.: ‘Singularities of différentiable maps’, Publ. Math. IHES 33 (1967), 383–419.Google Scholar
  342. [A3]
    Bröcker, Th. and Lander, L.: Differentiable germs and catastrophes, Cambridge Univ. Press, 1975.Google Scholar
  343. [A4]
    Oxtoby, J.C.: Measure and category, Springer, 1971 (translated from the German).Google Scholar
  344. [1]
    Novikov, P.S.: Elements of mathematical logic, Oliver & Boyd and Addison-Wesley, Edinburgh, 1964 (translated from the Russian).Google Scholar
  345. [2]
    Mendelson, E.: Introduction to mathematical logic, v. Nostrand, 1964.Google Scholar
  346. [A1]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  347. [A2]
    Rogers, jr., H.: Theory of recursive functions and effective computability, McGraw-Hill, 1967.Google Scholar
  348. [1]
    Stepanov, V.V.: A course of differential equations, Moscow, 1959 (in Russian).Google Scholar
  349. [2]
    Erugin, N.P.: A reader for a general course in differential equations, Minsk, 1979 (in Russian).Google Scholar
  350. [A1]
    Hale, J.K.: Ordinary differential equations, Wiley, 1980.Google Scholar
  351. [A2]
    Ince, E.L.: Ordinary differential equations, Dover, reprint, 1956.Google Scholar
  352. [1]
    Aleksandrov, P.S.: Theory of functions of a real variable and the theory of topological spaces, Moscow, 1978, pp. 280-358 (in Russian).Google Scholar
  353. [2]
    Aleksandrov, P.S.: ‘Some results in the theory of topological spaces obtained within the last twenty-five years’, Russian Math. Surveys 15, no. 2 (1960), 23–83. (Uspekhi Mat. Nauk 15, no. 2 (1960), 25-95)MathSciNetMATHGoogle Scholar
  354. [3A]
    Aleksandrov, P.S.: ‘On some basic directions in general topology’, Russian Math. Surveys 19, no. 6 (1964), 1–39. (Uspekhi Mat. Nauk 19, no. 6 (1964), 3-46)MATHGoogle Scholar
  355. [3B]
    Aleksandrov, P.S.: ‘Corrections to ‘On some basic directions in general topology’, Russian Math. Surveys 20, no. 1 (1965), 177–178. (Uspekhi Mat. Nauk 20, no. 1 (1965), 253-254)MATHGoogle Scholar
  356. [4]
    Aleksandrov, P.S. and Fedorchuk, V.V.: ‘The main aspects in the development of set-theoretical topology’, Russian Math. Surveys 33, no. 3 (1978), 1–53. (Uspekhi Mat. Nauk 33, no. 3 (1978), 3-48)MATHGoogle Scholar
  357. [5]
    Arkhangel’skiĭ, A.V.: ‘Mappings and spaces’, Russian Math. Surveys 21, no. 4 (1966), 115–162. (Uspekhi Mat. Nauk 21, no. 4 (1966), 133-184)MathSciNetGoogle Scholar
  358. [6]
    Arkhangel’skiĭ, A.V.: ‘Structure and classification of topological spaces and cardinal invariants’, Russian Math. Surveys 33, no. 6 (1978), 29–84. (Uspekhi Mat. Nauk 33, no. 6 (1978), 29-84)Google Scholar
  359. [A1]
    Arkhangel’skiĭ, A.V.: ‘Function spaces in the topology of pointwise convergence, and compact sets’, Russian Math. Surveys 39, no. 5 (1984), 9–56. (Uspekhi Mat. Nauk 39, no. 5(1984), 11-50)Google Scholar
  360. [A2]
    Arkhangel’skiĭ, A.V.: ‘Classes of topological groups’, Russian Math. Surveys 36, no. 3 (1981), 151–174. (Uspekhi Mat. Nauk 36, no. 3 (1981), 127-146)Google Scholar
  361. [A3]
    Engelking, R.: General topology, PWN & North-Holland, 1977.Google Scholar
  362. [A4]
    Kunen, K. and Vaughan, J.E.: Handbook of set-theoretic topology, North-Holland, 1984.Google Scholar
  363. [1]
    Shafarevich, I.R., et al.: ‘Algebraic surfaces’, Proc. Steklov Inst. Moth. 75 (1967). (Trudy Mat. Inst. Steklov. 75 (1965))Google Scholar
  364. [2]
    Bogomolov, F.A.: ‘Holomorphic tensors and vector bundles on protective varieties’, Math. USSR-Izv. 13, no. 3 (1979), 499–555. (Izv. Akad Nauk SSSR Ser. Mat. 42 (1978), 1227-1287)MathSciNetMATHGoogle Scholar
  365. [3]
    Beauville, A.:’ surfaces algébriques complexes’, Astérisque 54 (1978).Google Scholar
  366. [4]
    Bombieri, E.: ‘Canonical models of surfaces of general type’, Publ. Math. IHES 42 (1972), 447–495.Google Scholar
  367. [5]
    Bombieri, E. and Catanese, F.: The tricanonical map of surfaces with K=2, p g= 0’, in C.P. Ramanujam, A tribute, Springer, 1978, pp. 279-290.Google Scholar
  368. [6]
    Bombieri, E. and Husbmoller, D.: ‘Classification and embeddings of surfaces’, in R. Hartshorne (ed.): Algebraic Geometry, Proc. Symp. Pure Math., Vol. 29, Amer. Math. Soc., 1974, pp. 329-420.Google Scholar
  369. [7]
    Horkawa, E.: ‘Algebraic surfaces of general type with small \(c_1^2\), I’, Ann. of Math. 104 (1976), 357–387.MathSciNetGoogle Scholar
  370. [8A]
    Horkawa, E.: ‘Algebraic surfaces of general type with small \(c_1^2\), II’, Invent. Math. 37 (1976), 121–155.MathSciNetGoogle Scholar
  371. [8B]
    Horkawa, E.: ‘Algebraic surfaces of general type with small \(c_1^2\), III’, Invent.Math. 47 (1978), 209–248.MathSciNetGoogle Scholar
  372. [8C]
    Horkawa, E.: ‘Algebraic surfaces of general type with small \(c_1^2\), IV’, Invent. Math. 50 (1978-1979), 103–128.MathSciNetGoogle Scholar
  373. [9]
    Kodaira, K.: ‘Pluricanonical systems on algebraic surfaces of general type’, J. Math. Soc Japan 20 (1968), 170–192.MathSciNetMATHGoogle Scholar
  374. [10]
    Miyaoka, Y.: ‘On the Chern numbers of surfaces of general type’, Invent. Math. 42 (1977), 225–237.MathSciNetMATHGoogle Scholar
  375. [A1]
    Barth, W., Peters, C. and Ven, A. van de: Compact complex surfaces, Springer, 1984.Google Scholar
  376. [A2]
    Ekedahl, T.: ‘Canonical models of surfaces of general type in positive characteristic’, Publ. Math. IHES 67 (1988), 97–144.MathSciNetMATHGoogle Scholar
  377. [1]
    Kleene, S.C.: Mathematical logic, Wiley, 1967.Google Scholar
  378. [1]
    Levitan, B.M.: Almost-periodic functions, Moscow, 1953 (in Russian).Google Scholar
  379. [2]
    Besicovitch, A.S.: Almost periodic functions, Cambridge Univ. Press, 1932.Google Scholar
  380. [3]
    Amerio, L. and Prouse, G.: Almost-periodic functions and functional equations, v. Nostrand Reinhold, 1971.Google Scholar
  381. [4]
    Bochner, S.: ‘Abstrakte fastperiodische Funktionen’, Acta Math 61 (1933), 149–184.MathSciNetGoogle Scholar
  382. [5]
    Marchenko, V.A.: ‘Some questions in the theory of one-dimensional linear second-order differential operators’, Trudy Moskov. Mat. Obshch. 2 (1953), 3–83 (in Russian).Google Scholar
  383. [6]
    Levin, B.Ya.: ‘On the almost-periodic functions of Levitan’, Ukrain. Mat. Zh. 1 (1949), 49–101 (in Russian).MATHGoogle Scholar
  384. [7]
    Besicovitch, A.S. and Bohr, H.: ‘Almost periodicity and general trigonometric series’, Acta Math. 57 (1931), 203–292.MathSciNetGoogle Scholar
  385. [8]
    Levitan, B.M. and Zhkov, V.V.: Almost-periodic functions and differential equations, Cambridge Univ. Press, 1982 (translated from the Russian).Google Scholar
  386. [9]
    Fréchet, M.: ‘Les fonctions asymptotiquement presque-périodiques continues’, C.R. Acad Sci. Paris 213 (1941), 520–522.MathSciNetGoogle Scholar
  387. [10]
    Fréchet, M.: ‘Les transformations asymptotiquement presque périodiques discontinues et le lemme ergodique I’, Proc. Roy. Soc. Edinburgh Sect. A 63 (1950), 61–68.MathSciNetMATHGoogle Scholar
  388. [A1]
    Burckel, R.B.: Weakly almost-periodic functions on semigroups, Gordon & Breach, 1970.Google Scholar
  389. [A2]
    Leeuw, K.S. de and Glicksberg, I.: ‘Almost periodic functions on semigroups’, Acta Math. 105 (1961), 99–140.MathSciNetMATHGoogle Scholar
  390. [A3]
    Eberlein, W.F.: ‘Abstract ergodic theorems and weak almost periodic functions’, Trans. Amer. Math. Soc. 67 (1949), 217–240.MathSciNetMATHGoogle Scholar
  391. [A4]
    Landstadt, M.B.: ‘On the Bohr compactification of a transformation group’, Math. Z. 127 (1972), 167–178.MathSciNetGoogle Scholar
  392. [A5]
    Levttan, B.M.: ‘The application of generalized displacement operators to linear differential equations of the second order’, Transi. Amer. Math. Soc. (1) 10 (1950), 408–451. (Uspekhi Math. Nauk 4, no. 1(29) (1949), 3-112)Google Scholar
  393. [A6]
    Milnes, P.: ‘On vector-valued weakly almost periodic functions’, J. London Math. Soc. (2) 22 (1980), 467–472.MathSciNetMATHGoogle Scholar
  394. [A7]
    Reich, A.: ‘Präkompakte Gruppen und Fastperiodicität’, Math. Z 116 (1970), 216–234.Google Scholar
  395. [1]
    Vekua, I.N.: Generalized analytic functions, Pergamon, 1962 (translated from the Russian).Google Scholar
  396. [A1]
    Bers, L.: ‘An outline of the theory of pseudo-analytic functions’, Bull. Amer. Math. Soc. 62 (1956), 291–331.MathSciNetMATHGoogle Scholar
  397. [A2]
    Bers, L.: Theory of pseudo-analytic functions, New York Univ., 1953.Google Scholar
  398. [A3]
    Rodin, Yu.L.: Generalized analytic functions on Riemann surfaces, Springer, 1987.Google Scholar
  399. [A4]
    Rodin, Yu.L.: The Riemann boundary problem on Riemann surfaces, Reidel, 1988.Google Scholar
  400. [1]
    Dold, A.: ‘Relations between ordinary and extraordinary homology’, in Colloq. Algebraic Topology, August 1–10, 1962, Aarhus Univ., 1962, pp. 2-9.Google Scholar
  401. [2]
    Eilenberg, S. and Steenrod, N.E.: Foundations of algebraic topology, Princeton Univ. Press, 1952.Google Scholar
  402. [3]
    Conner, P.E. and Floyd, E.E.: Differentiable periodic maps, Springer, 1964.Google Scholar
  403. [4]
    Whitehead, G.W.: Recent advances in homotopy theory, Amer. Math. Soc., 1970.Google Scholar
  404. [5]
    Switzer, R.: Algebraic topology-homotopy and homology, Springer, 1975.Google Scholar
  405. [6]
    Novikov, S.P.: ‘The method of algebraic topology from the viewpoint of cobordism theories’, Math. USSR-Izv. 1 (1967), 827–913. (Izv. Akad. Nauk SSSR Ser. Mat. 31, no. 4 (1967), 855-951)Google Scholar
  406. [7]
    Atiyah, M.F.: ‘Thorn complexes’, Proc. London Math. Soc. 11 (1961), 291–310.MathSciNetMATHGoogle Scholar
  407. [8]
    Adams, J.F.: Stable homotopy and generalised homology, Univ. of Chicago, 1974.Google Scholar
  408. [9]
    Dyer, E. and Kahn, D.: ‘Some spectral sequences associated with fibrations’, Trans. Amer. Math. Soc. 145 (1969), 397–437.MathSciNetMATHGoogle Scholar
  409. [10]
    Araki, S. and Yosimura, Z.: ‘A spectral sequence associated with a cohomology theory of infinite CW-complexes’, Osaka J. Math. 9, no. 3 (1972), 351–365.MathSciNetMATHGoogle Scholar
  410. [11]
    Dyer, E.: Cohomology theories, Benjamin, 1969.Google Scholar
  411. [1]
    Sobolev, S.L.: ‘Le problème de Cauchy dans l’espace des fonctionnelles’, Dokl Akad Nauk SSSR 3 (1935), 291–294.Google Scholar
  412. [2]
    Sobolev, S.L.: ‘Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales’, Mat. Sb. 1 (1936), 39–72.MATHGoogle Scholar
  413. [3]
    Levi, B.: ‘Sul principio di Dirichlet’, Rend Circ. Mat. Palermo 22 (1906), 293–359.MATHGoogle Scholar
  414. [4]
    Nikol’skiĭ, S.M.: Approximation of functions of several variables and imbedding theorems, Springer, 1975 (translated from the Russian).Google Scholar
  415. [A1]
    Agmon, S.: Lectures on elliptic boundary value problems, v. Nostrand, 1965.Google Scholar
  416. [1]
    Delsarte, J.: ‘Sur une extension de la formule de Taylor’, J. Math. Pures Appl 17 (1938), 213–231.Google Scholar
  417. [2]
    Delsarte, J.: ‘Une extension nouvelle de la théorie des fonctions presque-périodiques de Bohr’, Acta Math. 69 (1938), 259–317.MathSciNetGoogle Scholar
  418. [3]
    Delsarte, J.: Colloque Internat. CNRS, 1956, pp. 29-45.Google Scholar
  419. [4]
    Levitan, B.M.: ‘The application of generalized displacement operators to linear differential equations of the second order’, Transl. Amer. Math. Soc. Ser. 1 10 (1962), 408–541. (Uspekhi Mat. Nauk 4, no. 1 (1949), 3-112)Google Scholar
  420. [5]
    Levitan, B.M.: The theory of generalized displacement operators, Moscow, 1973 (in Russian).Google Scholar
  421. [6A]
    Levitan, B.M.: ‘Normed rings generated by the generalized shift operator’, Dokl Akad Nauk SSSR 47 (1945), 3–6 (in Russian).Google Scholar
  422. [6B]
    Levitan, B.M.: ‘A theorem on the representation of positive-definite functions for the generalized shift operator’, Dokl. Akad. Nauk SSSR 47 (1945), 163–165 (in Russian).Google Scholar
  423. [6C]
    Levitan, B.M.: ‘Plancherel’s theorem for the generalized shift operator’, Dokl. Akad Nauk SSSR 47 (1945), 323–326. (in Russian).Google Scholar
  424. [6D]
    Levitan, B.M.: ‘A duality law for the generalized shift operator’, Dokl. Akad Nauk SSSR 47 (1945), 401–403. (in Russian).MathSciNetGoogle Scholar
  425. [7]
    Levitan, B.M.: ‘Converse Lie theorems for general generalized shift operators’, Dokl. Akad Nauk SSSR 123 (1958), 243–245. (in Russian).MathSciNetMATHGoogle Scholar
  426. [8]
    Berezanskiĭ, Yu.M. and Kreĭn, S.G.: ‘Hypercomplex systems with continuous basis’, Transi. Amer. Math. Soc. Ser. 1 16 (1960), 358–364. (Uspekhi Mat. Nauk 12, no. 1 (1957), 147-152)Google Scholar
  427. [9A]
    Krasichkov, I.F.: ‘Closed ideals in locally convex algebras of entire functions’, Math. USSR-Izv. 1, no. 1 (1967), 35–56. (Izv. Akad Nauk SSSR Ser. Mat. 31, no. 1 (1967), 37-60)Google Scholar
  428. [9B]
    Krasichkov, I.F.: ‘Closed ideals in locally convex algebras of entire functions II’, Math. USSR-Izv. 2, no. 5 (1968), 979–986. (Izv. Akad Nauk SSSR Ser Mat. 32, no. 5 (1968), 1024-1032)Google Scholar
  429. [10]
    Grabovskaya, R.Ya. and Kreĭn, S.G.: ‘Second order differential equations with operators generating a Lie algebra representation’, Math. Nachr. 75 (1976), 9–29.MathSciNetMATHGoogle Scholar
  430. [11]
    Grabovskaya, R.Ya., Kononenko, V.I. and Osipov, V.B.: ‘On a family of generalized shift operators’, Math. USSR-Izv. 11, no. 4 (1977), 865–888. (Izv. Akad Nauk SSSR Ser. Mat. 41, no. 4 (1977), 912-936)MATHGoogle Scholar
  431. [12]
    Maslov, V.P.: Teoret. Mat. Fiz. 33 (1977), 185–209.MathSciNetMATHGoogle Scholar
  432. [13]
    Rashevskiĭ, P.K.: ‘Description of the closed invariant sub-spaces of certain function spaces’, Proc. Moscow Math. Soc. 38, no. 2 (1980), 137–182. (Trudy Moskov. Mat. Obshch. 38 (1979), 139-185)Google Scholar
  433. [14]
    Gurevich, D.I.: ‘Generalized displacement operators with a right infinitesimal Sturm—Liouville operator’, Math. Notes 25, no. 3, 208–215. (Mat. Zametki 25, no. 3 (1979), 393-408)MathSciNetMATHGoogle Scholar
  434. [15]
    Dunkl, C.F.: ‘The measure algebra of a locally compact hypergroup’, Trans. Amer. Math. Soc. 179 (1973), 331–348.MathSciNetMATHGoogle Scholar
  435. [16]
    Jewett, R.I.: ‘Spaces with an abstract convolution of measures’, Adv. in Math. 18, no. 1 (1975), 1–101.MathSciNetMATHGoogle Scholar
  436. [17]
    Spector, R.: ‘Aperçu de la théorie des hypergroups’, in Anal. Harmonique des Groupes de Lie. Sem. Nancy-Strasbourg, Lecture notes in math., Vol. 497, Springer, 1975, pp. 643-673.Google Scholar
  437. [18]
    Spector, R.: ‘Mesures invariantes sur les hypergroupes’, Trans. Amer. Math. Soc. 239 (1978), 147–165.MathSciNetMATHGoogle Scholar
  438. [19]
    Ross, K.A.: ‘Hypergroups and centers of measure algebras’, Symposia Math., Vol. 22, Acad. Press, 1977, pp. 189-203.Google Scholar
  439. [20]
    Litvinov, G.L.: ‘Generalized shift operators and their representations’, Trudy Sem. Vektor. Tenzor. Anal, no. 18 (1978), 345–371 (in Russian).MathSciNetMATHGoogle Scholar
  440. [21]
    Chilana, A.K. and Ross, K.A.: ‘Spectral synthesis in hypergroups’, Pacific J. Math. 76 (1978), 313–328.MathSciNetMATHGoogle Scholar
  441. [22]
    Chilana, A.K. and Kumar, A.: ‘Spectral synthesis in Segal algebras on hypergroups’, Pacific J. Math. 80, no. 1 (1979), 59–76.MathSciNetMATHGoogle Scholar
  442. [23]
    Koornwinder, T.: ‘The addition formula for Jacobi polynomials and spherical harmonics. Lie algebras: applications and computational methods’, Siam. J. Appl Math. 25, no. 2 (1973), 236–236.MathSciNetMATHGoogle Scholar
  443. [A1]
    Chébli, H.: ‘Opérateurs de translation généralisée et semi-groupes de convolution’, in J. Faraut (ed.): Théorie du potentiel et analyse harmonique, Lecture notes in math., Vol. 404, Springer, 1974, pp. 36-59.Google Scholar
  444. [A2]
    Vainerman, L.I.: ‘Duality of algebras with an involution and generalized shift operators’, J. Soviet Math. 42 (1988), 2113–2138. (Itogi Nauk. i Tekhn. Mat Anal. 24 (1986), 165-206)Google Scholar
  445. [1]
    Dirac, P.A.M.: The principles of quantum mechanics. Clarendon Press, 1947.Google Scholar
  446. [2]
    Sobolev, S.L.: ‘Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales’, Mat. Sb. 1 (1936), 39–72.MATHGoogle Scholar
  447. [3]
    Schwartz, L.: Théorie des distributions, 1–2, Hermann, 1950–1951.Google Scholar
  448. [4]
    Bogolyubov, N.N., Logunov, AA. and Todorov, I.T.: Introduction to axiomatic quantum field theory, Benjamin, 1975 (translated from the Russian).Google Scholar
  449. [5]
    Gel’fand, I.M. and Shilov, G.E.: Generalized functions, 1–5, Acad. Press, 1966–1968 (translated from the Russian).Google Scholar
  450. [6]
    Vladimirov, V.S.: Equations of mathematical physics, Mir, 1984 (translated from the Russian).Google Scholar
  451. [7]
    Vladimirov, V.S.: Generalized functions in mathematical physics, Mir, 1979 (translated from the Russian).Google Scholar
  452. [8]
    Antosik, P., Mikusinski, J. and Sikorski, R.: Theory of distributions. The sequential approach, Elsevier, 1973.Google Scholar
  453. [A1]
    Yosida, K.: Functional analysis, Springer, 1980.Google Scholar
  454. [A2]
    Jones, D.S.: The theory of generalized functions, Cambridge Univ. Press, 1982.Google Scholar
  455. [A3]
    Rudin, W.: Functional analysis, McGraw-Hill, 1974.Google Scholar
  456. [A4]
    Hörmander, L.V.: The analysis of linear partial differential operators, 1, Springer, 1983.Google Scholar
  457. [1]
    Schwartz, L.: Théorie des distributions, 1, Hermann, 1950.Google Scholar
  458. [2]
    Sobolev, S.L.: Applications of functional analysis in mathematical physics, Amer. Math. Soc., 1963 (translated from the Russian).Google Scholar
  459. [A1]
    Yosida, K.: Functional analysis, Springer, 1980.Google Scholar
  460. [A2]
    Hörmander, L.: The analysis of linear partial differential operators, 1, Springer, 1983.Google Scholar
  461. [1]
    Schwartz, L.: Théorie des distributions, 1–2, Herman, 1950–1951.Google Scholar
  462. [2]
    Vladimirov, V.S.: Generalized functions in mathematical physics, Mir, 1979 (translated from the Russian).Google Scholar
  463. [3]
    Bogolyubov, N.N. and Parasyuk, O.S.: ‘Ueber die Multiplication der Kausalfunktionen in der Quantentheorie der Felder’, Acta Math 97 (1957), 227–266.MathSciNetMATHGoogle Scholar
  464. [4]
    Hepp, K.: Théorie de la renormalisation, Springer, 1969.Google Scholar
  465. [A1]
    Colombeau, J.F.: New generalized functions and multiplication of distributions, North-Holland, 1984.Google Scholar
  466. [A2]
    Keller, K.: ‘Analytic regularizations, finite part prescriptions and products of distributions’, Math. Ann. 236 (1978), 49–84.MathSciNetMATHGoogle Scholar
  467. [A3]
    Koornwinder, T.H. and Looder, J.J.: ‘Generalized functions’, in P.L Butzer, R.L. Stens and B. Sz.-Nagy (eds.): An aniversary volume on approximation theory and functional analysis, Birkhäuser, 1984, pp. 151-164.Google Scholar
  468. [A4]
    Hörmander, L.: The analysis of linear partial differential operators, 1, Springer, 1983.Google Scholar
  469. [1]
    Schwartz, L: Théorie des distributions, 1–2, Hermann, 1950–1951.Google Scholar
  470. [2]
    Bourbaki, N.: Elements of mathematics. Topological vector spaces, Addison-Wesley, 1977 (translated from the French).Google Scholar
  471. [3]
    Dieudonné, J. and Schwartz, L.: ‘La dualité dans les espaces (ℱ) et (ℒℱ)’, Ann. Inst. Fourier 1 (1949), 61–101.MATHGoogle Scholar
  472. [4]
    Grothendieck, A.: ‘Sur les espaces (F) et (DF)’ Summa Brasil. Math. 3, no. 6 (1954), 57–123.MathSciNetGoogle Scholar
  473. [5]
    Gel’fand, I.M. and Shilov, G.E.: Generalized functions, 2, Acad. Press, 1968 (translated from the Russian).Google Scholar
  474. [6]
    Yoshinaga, K.: ‘On a locally convex space introduced by J.S.E. Silva’, J. Sci. Hiroshima Univ. Ser. A 21 (1957), 89–98.MathSciNetMATHGoogle Scholar
  475. [7]
    Kawai, T.: ‘On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients’, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. (1970), 467-517.Google Scholar
  476. [8]
    Vladimirov, V.S.: Generalized functions in mathematical physics, Mir, 1979 (translated from the Russian).Google Scholar
  477. [A1]
    Treves, F.: Topoiogical vector spaces, distributions and kernels, Acad. Press, 1967.Google Scholar
  478. [A2]
    Zemanian, A.H.: Generalized integral transformations, Interscience, 1968.Google Scholar
  479. [A3]
    Bruijn, N.G. de: ‘A theory of generalized functions with applications to Wigner distribution and Weyl correspondence’, Niew Archief for Wiskunde (3) 21 (1973), 205–280.MATHGoogle Scholar
  480. [A4]
    Eijndhoven, S.J.L. van and Graaf, J. de: Trajectory spaces, generalized functions and unbounded operators, Lecture notes in math., 1162, Springer, 1985.Google Scholar
  481. [A5]
    Antosik, P., Mikusiński, J. and Sikorski, R.: Theory of distributions. The sequential approach, Elsevier, 1973.Google Scholar
  482. [A6]
    Köthe, G.: Topoiogical vector spaces, I, Springer, 1969.Google Scholar
  483. [A7]
    Horvath, J.: Topoiogical vector spaces and distributions, Addison-Wesley, 1966.Google Scholar
  484. [A8]
    Rudin, W.: Functional analysis, McGraw-Hill, 1974.Google Scholar
  485. [1]
    Kurosh, A.G.: The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).Google Scholar
  486. [2]
    Kurosh, A.G. and Chernikov, S.N.: ‘Solvable and nilpotent groups’, Uspekhi Mat. Nauk 2, no. 3 (1947), 18–59 (in Russian).Google Scholar
  487. [A1]
    Robinson, D.J.S.: Finiteness conditions and generalized soluble groups, Springer, 1972.Google Scholar
  488. [A2]
    Robinson, D.J.S.: A course in the theory of groups, Springer, 1980.Google Scholar
  489. [1]
    Kelley, J.L.: General topology, v. Nostrand, 1955.Google Scholar
  490. [2]
    Reid, M. and Simon, B.: Methods of modern mathematical physics, 1. Functional analysis, Acad. Press, 1972.Google Scholar
  491. [3]
    Moore, E.H. and Smith, H.L.: ‘A general theory of limits’, Amer. J. Math. 44 (1922), 102–121.MathSciNetMATHGoogle Scholar
  492. [1]
    Sobolev, S.L.: ‘Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales’, Mat. Sb. 1, no. 1 (1936), 39–72.MathSciNetMATHGoogle Scholar
  493. [2]
    Sobolev, S.L.: Applications of functional analysis in mathematical physics, Amer. Math. Soc., 1963 (translated from the Russian).Google Scholar
  494. [3]
    Schwartz, L.: Théorie des distributions, 1–2, Hermann, 1950–1951.Google Scholar
  495. [4]
    Gel’fand, I.M. and Shilov, G.E.: Some problems in differential equations, Moscow, 1958 (in Russian).Google Scholar
  496. [5]
    Hörmander, L.: The analysis of linear partial differential operators, 1–4, Springer, 1983–1985.Google Scholar
  497. [6]
    Komatsu, H. (ed.): Hyperfunctions and pseudo-differential equations, Lecture notes in math., 287, Springer, 1973.Google Scholar
  498. [7]
    Vladimirov, V.S.: Equations of mathematical physics, M. Dekker, 1971 (translated from the Russian).Google Scholar
  499. [8]
    Vladimirov, V.S.: Generalized functions in mathematical physics, Mir, 1979 (translated from the Russian).Google Scholar
  500. [9]
    Euler, L.: ‘Institutionum calculi integralis’, in Opera Omnia; series prima; opera math., Vol. 11–13, Teubner, 1913–1914.Google Scholar
  501. [1]
    Kurosh, A.G.: The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).Google Scholar
  502. [2]
    Kurosh, A.G. and Chernikov, S.N.: ‘Solvable and nilpotent groups’, Uspekhi Mat. Nauk 2, no. 3 (1947), 18–59 (in Russian).Google Scholar
  503. [1]
    Szegö, G.: Orthogonal polynomials, Amer. Math. Soc., 1975.Google Scholar
  504. [2]
    Suetin, P.K.: Classical orthogonal polynomials, Moscow, 1979 (in Russian).Google Scholar
  505. [3]
    Feller, W.: An introduction to probability theory and its applications, 1–2, Wiley, 1957–1971.Google Scholar
  506. [1]
    Hille, E. and Phillips, R.: Functional analysis and semigroups, Amer. Math. Soc., 1957.Google Scholar
  507. [2]
    Zabreĭko, P.P. and Zafievskiĭ, A.V.: ‘On a certain class of semigroups’, Soviet Math. Dokl 10, no. 6 (1969), 1523–1526. (Dokl. Akad Nauk 189, no. 5 (1969), 934-937)Google Scholar
  508. [3]
    Zafievskiĭ, A.V.: ‘On semigroups with singularities summable with a power-weight at zero’, Soviet Math. Dokl. 11, no. 6 (1970), 1408–1411. (Dokl. Akad Nauk 195, no. 1 (1970), 24-27)Google Scholar
  509. [A1]
    Kreĭn, S.G.: Linear differential equations in Banach space, Amer. Math. Soc., 1971 (translated from the Russian).Google Scholar
  510. [A2]
    Pazy, A.: Semigroups of linear operators and applications to partial differential equations, Springer, 1983.Google Scholar
  511. [A1]
    Kunen, K.: Set theory, North-Holland, 1980.Google Scholar
  512. [A2]
    Barwise, J. (ed.): Handbook of mathematical logic, North-Holland, 1977.Google Scholar
  513. [A3]
    Griffiths, Ph. and Harris, J.: Principles of algebraic geometry, Wiley, 1978, p. 20 ff.Google Scholar
  514. [A4]
    Hartshorne, R.: Algebraic geometry, Springer, 1977, p. 272.Google Scholar
  515. [A1]
    Bernstein, S.: ‘Principe de stationarité et généralisation de la loi de Mendel’, C.R. Acad Sci. Paris 177 (1923), 581–584.Google Scholar
  516. [A2]
    Etherington, I.M.H.: ‘Genetic algebras’, Proc. R. Soc. Edinburgh 59 (1939), 242–258.MathSciNetGoogle Scholar
  517. [A3]
    Gonshor, H.: ‘Contributions to genetic algebras’, Proc. Edinburgh Math. Soc. (2) 17 (1971), 289–298.MathSciNetMATHGoogle Scholar
  518. [A4]
    Holgate, P.: ‘Characterizations of genetic algebras’, J. London Math. Soc. (2) 6 (1972), 169–174.MathSciNetMATHGoogle Scholar
  519. [A5]
    Schafer, R.D.: ‘Structure of genetic algebras’, Amer. J. Math. 71 (1949), 121–135.MathSciNetMATHGoogle Scholar
  520. [A6]
    Walcher, S.: ‘Bernstein algebras which are Jordan algebras’, Arch. Math. 50 (1988), 218–222.MathSciNetMATHGoogle Scholar
  521. [A7]
    Wörz-Busekros, A.: Algebras in genetics, Lecture notes in biomath., 36, Springer, 1980.Google Scholar
  522. [1]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  523. [2]
    Gentzen, G.: ‘Untersuchungen über das logische Schliessen’, Math. Z 39 (1934), 176–210; 405-431.MathSciNetGoogle Scholar
  524. [3]
    Curry, H.B.: Foundations of mathematical logic, McGraw-Hill, 1963.Google Scholar
  525. [4]
    Prawitz, D.: ‘Ideas and results in proof theory’, in J.E. Fenstad (ed.): Proc. 2-nd Scand. Logic Symp., North-Holland, 1971, pp. 235-308.Google Scholar
  526. [1]
    Shafarevich, I.R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).Google Scholar
  527. [2]
    Hartshorne, R.: Algebraic geometry, Springer, 1978.Google Scholar
  528. [A1]
    Springer, G.: Introduction to Riemann surfaces, Addison-Wesley, 1957.Google Scholar
  529. [A2]
    Griffiths, P.A. and Harris, J.E.: Principles of algebraic geometry, Wiley, 1978.Google Scholar
  530. [1]
    Shafarevich, I.R., et al.: ‘Algebraic surfaces’, Proc. Steklov Inst. Math. 75 (1967). (Trudy Mat. Inst. Steklov. 75 (1965))Google Scholar
  531. [A1]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.Google Scholar
  532. [A2]
    Barth, W., Peters, C. and Ven, A. van de: Compact complex surfaces, Springer, 1984.Google Scholar
  533. [A3]
    Griffiths, P.A. and Harris, J.E.: Principles of algebraic geometry, Wiley, 1978.Google Scholar
  534. [1]
    Platonov, V.P.: ‘On the genus problem in arithmetic subgroups’, Soviet Math. Dokl. 12, no. 5 (1971), 1503-1507. (Dokl. Akad. Nauk SSSR 200, no. 4 (1971), 793-796)Google Scholar
  535. [2]
    Platonov, V.P. and Matveev, G.V.: ‘Abelian groups and the finite approximability of linear groups with respect to conjugacy’, Dokl. Akad Nauk Bel.SSR 14, no. 9 (1970), 777-779 (in Russian).Google Scholar
  536. [3]
    Rapinchuk, A.S.: ‘Platonov’s conjecture on the genus in arithmetic groups’, Dokl. Akad Nauk Bel.SSR 25, no. 2 (1981), 101-104; 187 (in Russian). English summary.Google Scholar
  537. [1]
    Levin, B.Ya.: Distributions of zeros of entire functions, Amer. Math. Soc., 1964 (translated from the Russian)Google Scholar
  538. [A1]
    Boas, R.P., Jr.: Entire functions, Acad. Press, 1954.Google Scholar
  539. [A1]
    Williams, P.J.: Pipelines and permafrost physical geography and development in the circumpolar north, Longman, 1979.Google Scholar
  540. [A2]
    Fasano, A. and Primicerio, M.: ‘Freezing of porous media: a review of mathematical models’, in V. Boffi and H. Neunzert (eds.): Proc. German-Italian Symp. Applic. Math, in Technology, Teubner, 1984, pp. 288-311.Google Scholar
  541. [1]
    Bugaro, Yu.D. and Stratilatova, M.B.: ‘Circumferences on a surface’, Proc. Steklov Inst. Math. 76 (1965), 109–141. (Trudy Mat. Inst. Steklov. 76 (1965), 88-114)Google Scholar
  542. [2]
    Blaschke, W.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. Affine Differentialgeometrie, 2, Springer, 1923.Google Scholar
  543. [A1]
    Nomizu, K. and Yano, K.: ‘On circles and spheres in Riemannian geometry’, Math. Ann. 210 (1974), 163–170.MathSciNetMATHGoogle Scholar
  544. [A2]
    Berger, M. and Gostiaux, B.: Differential geometry: manifolds, curves and surfaces, Springer, 1988 (translated from the French).Google Scholar
  545. [A3]
    Chen, B.Y.: Geometry of submanifolds, M. Dekker, 1973.Google Scholar
  546. [A1]
    Berger, M. and Gostiaux, B.: Differential geometry: manifolds, curves and surfaces, Springer, 1988 (translated from the French).Google Scholar
  547. [A2]
    Sternberg, S.: Lectures on differential geometry, Prentice-Hall, 1964.Google Scholar
  548. [A3]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).Google Scholar
  549. [A1]
    Do Carmo, M.: Differential geometry of curves and surfaces, Prentice Hall, 1976.Google Scholar
  550. [A2]
    Berger, M. and Gostiaux, B.: Differential geometry, Springer, 1988 (translated from the French).Google Scholar
  551. [A3]
    O’Neill, B.: Elementary differential geometry, Acad. Press, 1966.Google Scholar
  552. [A4]
    Blaschke, W. and Leichtweiss, K.: Elementare Differentialgeometrie, Springer, 1973.Google Scholar
  553. [A5]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 1, Wiley (Interscience), 1963.Google Scholar
  554. [A1]
    Busemann, H.: The geometry of geodesics, Acad. Press, 1955.Google Scholar
  555. [A2]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).Google Scholar
  556. [A1]
    Anosov, D.V.: ‘Geodesic flows on compact Riemannian manifolds of negative curvature’, Proc. Steklov Inst.Math. 90 (1969). (Trudy Mat Inst. Steklov. 90 (1969))Google Scholar
  557. [A2]
    Arnold, V.I.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).Google Scholar
  558. [A3]
    Klingenberg, W.: Riemannian geometry, Springer, 1982 (translated from the German).Google Scholar
  559. [1]
    Busemann, H.: The geometry of geodesics, Acad. Press, 1955.Google Scholar
  560. [A1]
    Gromov, M.: Structures métriques pour les variétés Riemanniennes, F. Nathan, 1981.Google Scholar
  561. [1]
    Fock, VA. [VA. Fok]: The theory of space, time and gravitation, Macmillan, 1954 (translated from the Russian).Google Scholar
  562. [2]
    Synge, J.L.: Relativity: the general theory, North-Holland & Interscience, 1960.Google Scholar
  563. [3]
    Infeld, L. and Hoffmann, B.: ‘Gravitational equations and problems of motion’, Ann. of Math. 39 (1938), 65–100.MathSciNetGoogle Scholar
  564. [A1]
    Infeld, L. and Plebański, J.: Motion and relativity, Pergamon & Polish Acad. Sci., 1960.Google Scholar
  565. [1]
    Rashewski, P.K. [P.K. Rashevskiĭ]: Riemannsche Geometrie und Tensoranalyse, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  566. [2]
    Lang, S.: Introduction to differentiable manifolds, Interscience, 1967.Google Scholar
  567. [3]
    Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Acad. Press, 1978Google Scholar
  568. [4]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grossen, Springer, 1968.Google Scholar
  569. [5]
    Synge, J.L.: Relativity: The general theory, North-Holland & Interscience, 1960.Google Scholar
  570. [6]
    Schnirelmann, L.G. [L.G. Shnirel’man]: Méthode topologiques dans les problèmes variationelles, Hermann, 1934 (translated from the Russian).Google Scholar
  571. [7]
    Milnor, J.: Morse theory, Princeton Univ. Press, 1963.Google Scholar
  572. [8]
    Aleksandrov, A.D.: Die innere Geometrie der konvexen Flächen, Akademie-Verlag, 1955 (translated from the Russian).Google Scholar
  573. [A1]
    Klingenberg, W.: Lectures on closed geodesics, Springer, 1978 (translated from the German).Google Scholar
  574. [A2]
    Busemann, H.: The geometry of geodesics, Acad. Press, 1955.Google Scholar
  575. [A3]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).Google Scholar
  576. [A4]
    Berger, M. and Gostiaux, B.: Differential geometry: manifolds, curves and surfaces, Springer, 1988 (translated from the French).Google Scholar
  577. [A5]
    O’Neill, B.: Semi-Riemannian geometry (with applications to relativity), Acad. Press, 1983.Google Scholar
  578. [A1]
    Klingenberg, W.: Riemannian geometry, Springer, 1982 (translated from the German).Google Scholar
  579. [1]
    Schouten, J.A.: Ricci-calculus, Springer, 1954 (translated from the German).Google Scholar
  580. [2]
    Pogorelov, A.V.: Hilbert’s fourth problem, Winston & Wiley, 1979 (translated from the Russian).Google Scholar
  581. [1]
    Cohn-Vossen, S.E.: ‘Kürzeste Wege und Totalkrümmung auf Flächen’, Compos. Math. 2 (1935), 69–133.MathSciNetGoogle Scholar
  582. [A1]
    Cheeger, J. and Ebin, D.: Comparison theorems in Riemannian geometry, North-Holland, 1975.Google Scholar
  583. [A1]
    Berger, M. and Gostiaux, B.: Differential geometry: manifolds, curves and surfaces, Springer, 1988, p. 395 (translated from the French).Google Scholar
  584. [A2]
    Do Carmo, M: Differential geometry of curves and surfaces, Prentice Hall, 1976, p. 153; 261.Google Scholar
  585. [A3]
    Spivak, M.: Differential geometry, 3, Publish or Perish, 1979.Google Scholar
  586. [1]
    Gauss, C.F.: Allgemeine Flächentheorie, W. Engelmann, Leipzig, 1900 (translated from the Latin).Google Scholar
  587. [2]
    Aleksandrov, A.D. and Zalgaller, V.A.: Intrinsic geometry of surfaces, Amer. Math. Soc., 1967 (translated from the Russian).Google Scholar
  588. [3]
    Aleksandrov, A.D.: ‘A theorem on triangles in a metric space and some of its applications’, Trudy Mat. Inst. Steklov. 38 (1951), 5–23. (in Russian).MATHGoogle Scholar
  589. [4]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grossen, Springer, 1968.Google Scholar
  590. [A1]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).Google Scholar
  591. [A2]
    Cheeger, J. and Ebin, D.: Comparison theorems in Riemannian geometry, North-Holland, 1975.Google Scholar
  592. [A3]
    Cheeger, J., Müller, W. and Schrader, R.: ‘On the curvature of piecewise flat spaces’, Comm. Math. Physics 92 (1984), 405–454.MATHGoogle Scholar
  593. [1]
    Bock, Y., et al.: ‘A demonstration of 1–2 parts in 107 accuracy using GPS’, Bulletin Géodésique 60 (1986), 241–254.Google Scholar
  594. [2]
    Möhle, A.: Die Verwendung von geographischen Koordinaten in der Theorie allgemeiner Flächen, Friedrich-Wilhelm Univ. Bonn, 1934. Dissertation.Google Scholar
  595. [3]
    Molodenskiĭ, M.S., Eremeev, V.F. and Yurkina, M.I.: Methods for study of the external gravitational field and figure of the Earth, Israel Program Sci. Transl., 1962 (translated from the Russian).Google Scholar
  596. [4]
    Moritz, H.: Advanced physical geodesy, H. Wichmann, Karlsruhe, 1980.Google Scholar
  597. [5]
    Senus, W.J.: ‘NAVSTAR Global Positioning System: status’, in The future of terrestrial and space methods for positioning. Proc. Internat. Assoc. Geodesy and Geophysics. XVIII General Assembly. Hamburg, August 15–27, Ohio State Univ., 1983, pp. 181-445.Google Scholar
  598. [6]
    Vaniček and Krakiwsky, E.J.: Geodesy: the concepts, North-Holland, 1982.Google Scholar
  599. [A1]
    Jeffreys, H.: The Earth, its origin, history and physical constitution, Cambridge Univ. Press, 1970.Google Scholar
  600. [1]
    Friedlander, F.G.: Sound pulses, Cambridge Univ. Press, 1958.Google Scholar
  601. [2]
    Babich, V.M. and Buldyrev, V.S.: Asymptotic methods in the diffraction of short waves, Moscow, 1972 (in Russian).Google Scholar
  602. [A1]
    Kline, M. and Kay, I.W.: Electromagnetic theory and geometrical optics, Interscience, 1965.Google Scholar
  603. [A2]
    Felsen, L.B. and Marcuvitz, N.: Radiation and scattering of waves, Prentice-Hall, 1973, Sect. 1.7.Google Scholar
  604. [A1]
    Munkres, J.R.: Elements of algebraic topology, Addison-Wesley, 1984.Google Scholar
  605. [A2]
    Spanier, E.: Algebraic topology, McGraw-Hill, 1966.Google Scholar
  606. [A3]
    Grünbaum, B.: Convex polytopes, Interscience, 1967.Google Scholar
  607. [A4]
    Grünbaum, B.: ‘Polytopes, graphs and complexes’, Bull. Amer. Math. Soc. 76 (1970), 1131–1201.MathSciNetMATHGoogle Scholar
  608. [1]
    Adler, A.: Theorie der geometrischen Konstruktionen, Göschen, 1906.Google Scholar
  609. [2]
    Hilbert, D.: Grundlagen der Geometrie, Springer, 1913.Google Scholar
  610. [3]
    Enzyklopaedie der Elementarmathematik, Deutsch. Verlag Wissenschaft., 1969 (translated from the Russian).Google Scholar
  611. [A1]
    Bieberbach, L.: Theorie der geometrischen Konstruktionen, Birkhäuser, 1952.Google Scholar
  612. [A2]
    Mehlhorn, K.: Multidimensional searching and computational geometry, Springer, 1984.Google Scholar
  613. [A3]
    Edelsbrunner, H.: Algorithms in combinatorial geometry, Springer, 1987.Google Scholar
  614. [1]
    Baldassarri, M.: Algebraic varieties, Springer, 1956.Google Scholar
  615. [2]
    Shafarevich, I.R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).Google Scholar
  616. [A1]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.Google Scholar
  617. [A1]
    Coxeter, H.S.M.: Introduction to geometry, Wiley, 1961.Google Scholar
  618. [A2]
    Hilbert, D. and Cohn-Vossen, S.: Anschauliche Geometrie, Springer, 1932.Google Scholar
  619. [1]
    Veblen, O. and Whitehead, G.: The foundations of differential geometry Cambridge Univ. Press, 1932.Google Scholar
  620. [2]
    Laptev, G.F.: ‘Differential geometry of imbedded manifolds’, Trudy Moskov. Mat. Obshch. 2 (1953), 275–382 (in Russian).MathSciNetMATHGoogle Scholar
  621. [A1]
    Schouten, J.A.: Ricci-calculus, Springer, 1954 (translated from the German).Google Scholar
  622. [A2]
    Kobayashi, S.: Transformation groups in differential geometry, Springer, 1972.Google Scholar
  623. [1]
    Kendall, M.G. and Moran, P.A.P.: Geometric probability, Griffin, 1963.Google Scholar
  624. [2]
    Kendall, D.G. and Harding, E.F.: Stochastic geometry, Wiley, 1974.Google Scholar
  625. [A1]
    Stoyan, D., Kendall, W.S. and Mecke, J.: Stochastic geometry and its applications, Wiley, 1987.Google Scholar
  626. [A2]
    Ambartzumian, R.V. (ed.): Stochastic and integral geometry, Reidel, 1987.Google Scholar
  627. [A3]
    Matheron, G.: Random sets and integral geometry, Wiley, 1975.Google Scholar
  628. [1]
    Zariski, O. and Samuel, P.: Commutative algebra, 1, Springer, 1975.Google Scholar
  629. [2]
    Chevalley, C.: ‘Intersection of algebraic and algebroid varieties’, Trans. Amer. Math. Soc. 57 (1945), 1–85.MathSciNetMATHGoogle Scholar
  630. [3]
    Samuel, P.: Algèbre locale, Gauthier-Villars, 1953.Google Scholar
  631. [4]
    Nagata, M.: Local rings, Interscience, 1962.Google Scholar
  632. [5]
    Grothendieck, A.: ‘Eléments de géométrie algébrique IV. Etude locale des schémas et des morphismes des schémas’, Publ. Math. IHES, no. 32 (1967).Google Scholar
  633. [1]
    Rainich, G.Y.: ‘Electrodynamics in general relativity theory’, Trans. Amer. Math. Soc. 27 (1925), 106–136.MathSciNetMATHGoogle Scholar
  634. [2]
    Wheeler, J.A.: Geometrodynamics, Acad. Press, 1962.Google Scholar
  635. [3]
    Harrison, B.K., Thorne, K.S., Wakano, M. and Wheeler, J.A.: Gravitational theory and gravitational collapse, Univ. Chicago Press, 1965.Google Scholar
  636. [4]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics, 2. Structure and evolution of the universe, Chicago, 1983 (translated from the Russian).Google Scholar
  637. [A1]
    Wheeler, J.A.:’ some implications of general relativity for the structure and evolution of the universe’, in XI Conseil de Physique Solvay. Bruxelles, 1958, pp. 97-148.Google Scholar
  638. [1]
    Aleksandrov, A.D.: ‘Geometry’, in Large Soviet Encyclopedia, Vol. 6.Google Scholar
  639. [2A]
    Aleksandrov, A.D.: ‘A general view of mathematics’, in A.D. Aleksandrov, A.N. Kolmogorov and M.A. Lavrent’ev (eds.): Mathematics, its content, methods, and meaning, Vol. 1, M.I.T., 1969, pp. 1-64 (translated from the Russian).Google Scholar
  640. [2B]
    Delone, B.N.: ‘Analytic geometry’, in A.D. Aleksandrov, A.N. Kolmogorov and M.A. Lavrent’ev (eds.): Mathematics, its content, methods, and meaning, Vol. 1, M.I.T., 1969, pp. 183-260 (translated from the Russian).Google Scholar
  641. [2C]
    Aleksandrov, A.D.: ‘Non-euclidean geometry’, in A.D. Aleksandrov, A.N. Kolmogorov and M.A. Lavrent’ev (eds.): Mathematics, its content, methods, and meaning, Vol. 2, M.I.T., 1969, pp. 97-189 (translated from the Russian).Google Scholar
  642. [3]
    Waerden, B.L. van der: Science awakening, Noordhoff, 1975. Translated from the Dutch.Google Scholar
  643. [4]
    Wieleitner, H.: Geschichte der Mathematik, de Gruyter, 1923.Google Scholar
  644. [5]
    Klein, F.: Development of mathematics in the 19th century, Math. Sci. Press, 1979 (translated from the German).Google Scholar
  645. [6]
    Struik, D.J.: A concise history of mathematics, Bell, 1954. Translated from the Dutch.Google Scholar
  646. [7]
    Hilbert, D.: Grundlagen der Geometrie, Springer, 1913.Google Scholar
  647. [8]
    On the foundation of geometry, Moscow, 1956 (in Russian). Collection of translations.Google Scholar
  648. [9]
    Efimov, N.V.: Höhere Geometrie, Deutsch. Verlag Wissenschaft., 1960 (translated from the Russian).Google Scholar
  649. [10]
    Klein, F.: Vorlesungen über höhere Geometrie, Springer, 1926.Google Scholar
  650. See also the references to individual geometric disciplines.Google Scholar
  651. [A1]
    Bonola, R.: Non-Euclidean geometry, Dover, reprint, 1955 (translated from the Italian).Google Scholar
  652. [A2]
    Hilbert, D. and Cohn-Vossen, S.: Anschauliche Geometrie, Springer, 1933.Google Scholar
  653. [A3]
    Tölke, J. and Wills, J.M. (eds.): Contributions to geometry, Birkhäuser, 1979.Google Scholar
  654. [A4]
    Gruber, P. and Wills, J.M. (eds.): Convexity and its applications, Birkhäuser, 1983.Google Scholar
  655. [A5]
    Davis, C, Grünbaum, B. and Sherk, F.A. (eds.): The geometric vein (Coxeter-Festschrift), Springer, 1980.Google Scholar
  656. [A6]
    Coxeter, H.S.M.: Unvergängliche Geometrie, Birkhäuser, 1963.Google Scholar
  657. [A7]
    Dubrovin, B., Novikov, S. and Fomenko, A.: Modern geometry, Springer, 1984 (translated from the Russian).Google Scholar
  658. [A8]
    Greenberg, M: Euclidean and non-Euclidean geometries, Freeman, 1974.Google Scholar
  659. [A9]
    Berger, M.: Geometry, 1–2, Springer, 1987 (translated from the French).Google Scholar
  660. [A10]
    Coxeter, H.S.M.: Introduction to geometry, Wiley, 1963.Google Scholar
  661. [A11]
    Boyer, C.B.: History of analytic geometry, Scripta Math., 1956.Google Scholar
  662. [A12]
    Chasles, M.: Aperçu historique sur l’origine et le développment des méthodes en géométrie, Gauthier-Villars, 1889.Google Scholar
  663. [A13]
    Coolidge, J.L.: A history of geometrical methods, Oxford Univ. Press, 1947.Google Scholar
  664. [A14]
    Heath, Th.L.: A manual of greek mathematics, Dover, 1963.Google Scholar
  665. [A15]
    Klein, F.: Vorlesungen über höhere Geometrie, Springer, 1926.Google Scholar
  666. [A16]
    Loria, G.: Storia della geometria descrittiva, U. Hoepli, 1921.Google Scholar
  667. [A17]
    Russell, B.: An essay on the foundations of geometry, Dover, reprint, 1956.Google Scholar
  668. [A18]
    Waerden, B.L. van der: Geometry and algebra in ancient civilizations, Springer, 1983.Google Scholar
  669. [A19]
    Kline, M: Mathematical thougt from ancient to modern times, Oxford Univ. Press, 1972.Google Scholar
  670. [1]
    Cohn-Vossen, S.E.: Some problems of differential geometry in the large, Moscow, 1959 (in Russian).Google Scholar
  671. [2]
    Aleksandrov, A.D.: Die innere Geometrie der konvexen Flächen, Akademie-Verlag, 1955 (translated from the Russian).Google Scholar
  672. [3]
    Efimov, N.V.: ‘Geometry’ in the large’’, in Mathematics in the USSR during 40 years: 19171957, Vol. 1, Moscow, 1959 (in Russian).Google Scholar
  673. [4]
    Pogorelov, A.V.: Extrinsic geometry of convex surfaces, Amer. Math. Soc., 1973 (translated from the Russian).Google Scholar
  674. [5]
    Gromoll, D., Klingenberg, W. and Meyer, W.: Riemannsche Geometrie im Grossen, Springer, 1968.Google Scholar
  675. [A1]
    Klingenberg, W.: Riemannian geometry, de Gruyter, 1982 (translated from the German).Google Scholar
  676. [A2]
    Cheeger, J. and Ebin, D.: Comparison theorems in Riemannian geometry, North-Holland, 1975.Google Scholar
  677. [A3]
    Yau, S.T.: ‘Problem section’, in Seminar on differential geometry, Ann. of Math. Studies, Vol. 102, Princeton Univ. Press, 1982, pp. 669-706.Google Scholar
  678. [A4]
    Milnor, J.: Morse theory, Princeton Univ. Press, 1963.Google Scholar
  679. [1]
    Eisenhart, L.P.: Riemannian geometry, Princeton Univ. Press, 1949.Google Scholar
  680. [2]
    Chen, B.: Geometry of submanifolds, M. Dekker, 1973.Google Scholar
  681. [3]
    Chern, S.-S. and Lashof, R.K.: ‘On the total curvature of immersed manifolds’, Amer. J. Math. 79 (1957), 306–318.MathSciNetMATHGoogle Scholar
  682. [4]
    Shefel’, S.Z.: ‘Two classes of k-dimensional surfaces in n-dimensional Euclidean space’, Sib. Math. J. 10 (1969), 328–333. (Sibirsk. Mat. Zh. 10, no. 2 (1969), 459-466)MATHGoogle Scholar
  683. [5]
    Glazyrin, V.V.: ‘Topological and metric properties of k-saddle surfaces’, Soviet Math. Dokl. 18 (1977), 532–534. (Dokl. Akad. Nauk SSSR 233, no. 6 (1977), 1028-1030)MathSciNetMATHGoogle Scholar
  684. [6A]
    Hartman, P.: ‘On isometric immersions in Euclidean space of manifolds with non-negative sectional curvatures’, Trans. Amer. Math. Soc. 115 (1965), 94–109.MathSciNetMATHGoogle Scholar
  685. [6B]
    Hartman, P.: ‘On the isometric immersions in Euclidean space of manifolds with nonnegative sectional curvatures II’, Trans. Amer. Math. Soc. 147 (1970), 529–540.MathSciNetGoogle Scholar
  686. [7]
    Gromov, M.L.: ‘Isometric imbeddings and immersions’, Soviet Math. Dokl. 11 (1970), 794–797. (Dokl. Akad. Nauk SSSR 192, no. 6 (1970), 1206-1209)MATHGoogle Scholar
  687. [8]
    Chern, S.-S. and Kuiper, N.H.: ‘Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space’, Ann. of Math. 56, no. 3 (1952), 422–430.MathSciNetGoogle Scholar
  688. [9]
    Borovskiĭ, Yu.E. and Shefel’, S.Z.: ‘On Chern-Kuiper theorem’, Sib. Math. J. 19 (1978), 978. (Sibirsk. Mat. Zh. 19, no. 6 (1978), 1386-1387)Google Scholar
  689. [10]
    Borisenko, A.A.: ‘Complete l-dimensional surfaces of nonpositive extrinsic curvature in a Riemannian space’, Math. USSR Sb. 33 (1977), 485–499. (Mat. Sb. 104, no. 4 (1977), 559-576)MATHGoogle Scholar
  690. [11]
    Moore, J.D.: ‘Codimension two submanifolds of positive curvature’, Proc. Amer. Math. Soc. 70, no. 1 (1978), 72–74.MathSciNetMATHGoogle Scholar
  691. [12]
    Gardner, R.B.: ‘New viewpoints in the geometry of submanifolds of RNBull. Amer. Math. Soc. 83, no. 1 (1977), 1–35.MathSciNetMATHGoogle Scholar
  692. [A1]
    Gromov, M.: Partial differential relations, Springer, 1986 (translated from the Russian).Google Scholar
  693. [A2]
    Gromov, M. and Rokhlin, V.: ‘Embeddings and immersions in Riemannian geometry’, Russian Math. Surveys 25, no. 5 (1970), 1–57. (Uspekhi Mat. Nauk 25, no. 5 (1970), 3-62)MATHGoogle Scholar
  694. [1]
    Minkowski, H.: Geometrie der Zahlen, Chelsea, reprint, 1953.Google Scholar
  695. [2]
    Minkowski, H.: Diophantische Approximationen, Chelsea, reprint, 1957.Google Scholar
  696. [3]
    Hancock, H.: Development of the Minkowski geometry of numbers, MacMillan, 1939.Google Scholar
  697. [4]
    Cassels, J.W.S.: An introduction to the geometry of numbers, Springer, 1959.Google Scholar
  698. [5]
    Lekkerkerker, C.G. and Gruber, P.M.: Geometry of numbers, North-Holland, 1987. Updated reprint.Google Scholar
  699. [6]
    Fejes Toth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum, Springer, 1972.Google Scholar
  700. [7]
    Rogers, C.A.: Packing and covering, Cambridge Univ. Press, 1964.Google Scholar
  701. [8]
    Keller, O.-H.: ‘Geometrie der Zahlen’, in Enzyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Vol. 12, 1954. Heft 11, Teil III.Google Scholar
  702. [9]
    Hlawka, E.: ‘Grundbegriffe der Geometrie der Zahlen’, Jahresber. Deutsch. Math-Verein 57 (1954), 37–55.MathSciNetMATHGoogle Scholar
  703. [10]
    Baranovskiĭ, E.P.: ‘Packings, coverings, partitionings and certain other distributions in spaces of constant curvature’, Progress Math 9 (1971), 209–253. (Itogi Nauk. Algebra Topol. Geom. 1967 (1969), 189-225)Google Scholar
  704. [11]
    Koksma, J.F.: Diophantische Approximationen, Springer, 1936.Google Scholar
  705. [12]
    Macbeath, A.M. and Rogers, C.A.: ‘Siegel’s mean value theorem in the geometry of numbers’, Proc. Cambridge Philos. Soc. (2) 54 (1958), 139–151.MathSciNetMATHGoogle Scholar
  706. [13]
    Schmidt, W.: ‘On the Minkowski—Hlawka theorem’, Illinois J. Math 7 (1963), 18–23; 714.MathSciNetGoogle Scholar
  707. [14]
    Markov, A.M.: ‘On binary quadratic forms with positive determinant’, Uspekhi Mat. Nauk 3, no. 5 (1948), 7–51 (in Russian).MATHGoogle Scholar
  708. [15]
    Rogers, K. and Swinnerton-Dyer, H.P.F.: ‘The geometry of numbers over algebraic number fields’, Trans. Amer. Math. Soc. 88 (1958), 227–242.MathSciNetMATHGoogle Scholar
  709. [A1]
    Gruber, P.M.: ‘Geometry of numbers’, in J.M. Wills and J. Tölke (eds.): Contributions to geometry, Birkhäuser, 1979, pp. 186-225.Google Scholar
  710. [A2]
    Conway, J.H. and Sloane, N.J.A.: Sphere packing, lattices and groups, Springer, 1987.Google Scholar
  711. [A3]
    Erdös, P., Gruber, P.M. and Hammer, J.: Lattice points, Longman, forthcoming.Google Scholar
  712. [A4]
    Ryskov, S.S.: The geometry of positive quadratic forms, Amer. Math. Soc, 1982.Google Scholar
  713. [A5]
    Malyshev, A.B. and Teterina, Yu.G.: Investigations in number theory, 9, Leningrad, 1986 (in Russian).Google Scholar
  714. [A6]
    Thompson, T.M.: From error-correcting codes through sphere packing to simple groups, Math. Assoc. Amer., 1983.Google Scholar
  715. [A7]
    Fejes Toth, G.: ‘New results in the theory of packing and covering’, in P.M. Gruber and J.M. Wills (eds.): Convexity and its applications, Birkhäuser, 1983, pp. 318-359.Google Scholar
  716. [A8]
    Voronoĭ, G.F.: Collected works, 1–3, Kiev, 1952 (in Russian).Google Scholar
  717. [A9]
    Chalk, J.H.H.: ‘Algebraic lattices’, in P.M. Gruber and J.M. Wills (eds.): Convexity and its applications, Birkhäuser, 1983, pp. 97-110.Google Scholar
  718. [A10]
    Minkowski, H.: Gesammelte Abhandlungen, Teubner, 1911.Google Scholar
  719. [1]
    Fedynskiĭ, V.V.: Geophysical exploration, Moscow, 1964 (in Russian).Google Scholar
  720. [2]
    Malovichko, A.K.: Methods of analytic continuation of anomaly of an attraction force and their applications to problems of gravity, Moscow, 1956 (in Russian).Google Scholar
  721. [3]
    Dmitriev, V.I.: Electromagnetic fields in non-homegeneous media, Moscow, 1969 (in Russian).Google Scholar
  722. [4]
    Questions of the dynamic theory of propagation of seismic waves, 3, Leningrad, 1959 (in Russian).Google Scholar
  723. [5]
    Tikhonov, A.N.: ‘Regularization of incorrectly posed problems’, Soviet Math. Dokl. 4, no. 6 (1963), 1624–1627. (Dokl. Akad. Nauk SSSR 153, no. 1 (1963), 49-52)MATHGoogle Scholar
  724. [6]
    Lavrentiev, M.M. [M.A. Lavrent’ev]: Some improperly posed problems of mathematical physics, Springer, 1967 (translated from the Russian).Google Scholar
  725. [7]
    Tikhonov, A.N.: ‘On the stability of inverse problems’, Dokl. Akad. Nauk SSSR 39, no. 5 (1943), 176–179.MathSciNetMATHGoogle Scholar
  726. [8]
    Tikhonov, A.N. and Arsenine, V.I. [V.I. Arsenin]: Solutions of ill-posed problems, Halted Press, 1977 (translated from the Russian).Google Scholar
  727. [9]
    Tikhonov, A.N. and Goncharskiĭ, A.V. (eds.): Ill-posed problems in the natural sciences, Moscow, 1987 (in Russian).Google Scholar
  728. [A1]
    Morozov, V.A.: Methods for solving incorrectly posed problems, Springer, 1984 (translated from the Russian).Google Scholar
  729. [A2]
    Tarantola, A.: Inverse problem theory. Methods for data fitting and model parameter estimation, Elsevier, 1987.Google Scholar
  730. [A3]
    Weglein, A.B.: ‘The inverse scattering concept and its seismic application’, in A.A. Fitch (ed.): Developments in geophysical exploration, Vol. 6, Elsevier, 1985, pp. 111-138.Google Scholar
  731. [A4]
    Aki, K. and Richards, P.G.: Quantitative seismology, I–II, Freeman, 1980.Google Scholar
  732. [A5]
    Achenbach, J.D.: Wave propagation in elastic solids, North-Holland, 1973.Google Scholar
  733. [A6]
    Hyden, J.H.M.T. van der: Propagation of transient elastic waves in stratified anisotropic media, North-Holland, 1987.Google Scholar
  734. [1]
    Tikhonov, A.N.: Dokl. Akad. Nauk SSSR 1, no. 5 (1935), 294–300.Google Scholar
  735. [2]
    Tikhonov, A.N.: Izv. Akad. Nauk SSSR Otd. Mat. Estestv. Nauk. Ser. Geogr. 3 (1937), 461–479.Google Scholar
  736. [3]
    Tikhonov, A.N.: ‘On boundary conditions containing derivatives of an order higher than the order of the equation’, Mat. Sb. 26 (68), no. 1 (1950), 35–56 (in Russian).Google Scholar
  737. [4]
    Lyubimova, E.A.: Thermics of the Earth and the moon, Moscow, 1968 (in Russian).Google Scholar
  738. [A1]
    Carslaw, H.S. and Jaeger, J.C.: Conduction of heat in solids, Clarendon Press, 1959.Google Scholar
  739. [1]
    Gunning, R.C. and Rossi, H.: Analytic functions of several complex variables, Prentice-Hall, 1965.Google Scholar
  740. [A1]
    Hervé, M.: Several complex variables: local theory, Oxford Univ. Press, 1967.Google Scholar
  741. [1]
    Gibbs, J.W.: Elementary principles in statistical mechanics, Dover, 1960.Google Scholar
  742. [2]
    Huang, K.: Statistical mechanics, Wiley, 1963.Google Scholar
  743. [3]
    Hill, T.L.: Statistical mechanics, McGraw-Hill, 1956.Google Scholar
  744. [A1]
    Ruelle, D.: Statistical mechanics: rigorous results, Benjamin, 1974.Google Scholar
  745. [A2]
    Landau, L.D. and Lifshitz, E.M.: Statistical physics, A course of theoretical physics, 5, Pergamon, 1969 (translated from the Russian).Google Scholar
  746. [1]
    Wilbraham, H.: Cambridge and Dublin Math. J. 3 (1848), 198–201.Google Scholar
  747. [2]
    Gibbs, J.W.: Nature 59 (1898), 200.Google Scholar
  748. [3]
    Zygmund, A.: Trigonometrical series, 1–2, Cambridge Univ. Press, 1988.Google Scholar
  749. [A1]
    Gibbs, J.W.: Nature 59 (1899), 606.Google Scholar
  750. [A2]
    Carslaw, H.S.: Introduction to the theory of Fourier’s series and integrals, Dover, reprint, 1930.Google Scholar
  751. [A1]
    Gibbs, J.W.: Elementary principles in statistical mechanics, Dover, 1960.Google Scholar
  752. [1]
    Kendall, M.G. and Stuart, A.: The advanced theory of statistics. Distribution theory, Griffin, 1969.Google Scholar
  753. [1]
    Giraud, G.: ‘Existence de certaines dérivées des functions de Green; consequences pour les problèmes du type de Dirichlet’, C.R. Acad. Sci. Paris 202 (1936), 380–382.Google Scholar
  754. [2A]
    Giraud, G.: ‘Généralisation des problèmes sur les opérateurs du type elliptique’, Bull. Sci. Math. 56 (1932), 248–272.Google Scholar
  755. [2B]
    Giraud, G.: ‘Généralisation des problèmes sur les opérateurs du type elliptique’, Bull. Sci. Math. 56 (1932), 281–312.Google Scholar
  756. [2C]
    Giraud, G.: ‘Généralisation des problèmes sur les opérateurs du type elliptique’, Bull. Sci. Math. 56 (1932), 316–352.Google Scholar
  757. [3]
    Giraud, G.: ‘Nouvelle méthode pour traité certains problèmes relatifs aux équations du type elliptique’, J. Math. Pures. Appl. 18 (1939), 111–143.MathSciNetGoogle Scholar
  758. [4]
    Miranda, C.: Partial differential equations of elliptic type, Springer, 1970 (translated from the Italian).Google Scholar
  759. [1]
    Cassels, J.W.S. and Fröhlich, A. (eds.): Algebraic number theory, Acad. Press, 1986.Google Scholar
  760. [1]
    Jenkins, J.A.: Univalent functions and conformai mappings, Springer, 1958.Google Scholar
  761. [2]
    Jenkins, J.A.: ‘On the global structure of the trajectories of a positive quadratic differential’, Illinois J. Math. 4, no. 3 (1960), 405–412.MathSciNetMATHGoogle Scholar
  762. [1]
    Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Acad. Press, 1978.Google Scholar
  763. [2]
    Loos, O.: Symmetric spaces, 1–2, Benjamin, 1969.Google Scholar
  764. [A1]
    Grothendieck, A.: Elements de géométrie algébrique /, IHES, 1960, Sect. 0.4.1.7.Google Scholar
  765. [A2]
    Hazewinkel, M.: ‘A tutorial introduction to differentiate manifolds and calculus on differentiate manifolds’, in W. Schiehlen and W. Wedig (eds.): Analysis and estimation of stochastic mechanical systems, Springer (Wien), 1988, pp. 316-340.Google Scholar
  766. [1]
    Aleksandrov, A.D. and Zalgaller, V.A.: ‘Two-dimensional manifolds of bounded curvature’, Proc. Steklov Inst. Math. 76 (1962). (Trudy Mat. Inst. Steklov. 76 (1962))Google Scholar
  767. [2]
    Pogorelov, A.V.: Die Verbiegung konvexer Flächen, Deutsch. Verlag Wissenschaft., 1957 (translated from the Russian).Google Scholar
  768. [1]
    Lavrent’ev, M.A.: ‘Sur une classe de répresentations continues’, Mat. Sb. 42, no. 4 (1935), 407–424.MathSciNetGoogle Scholar
  769. [2]
    Volkovyskiĭ, L.I.: ‘On the problem of the connectedness type of Riemann surfaces’, Mat. Sb. 18, no. 2 (1946), 185–212 (in Russian).Google Scholar
  770. [3]
    Schaeffer, A.C. and Spencer, D.C.: ‘Variational methods in conformal mapping’, Duke Math. J. 14, no. 4 (1947), 949–966.MathSciNetMATHGoogle Scholar
  771. [4]
    Schaeffer, A.C. and Spencer, D.C.: Coefficient regions for schlicht functions, Amer. Math. Soc. Coll. Publ., 35, Amer. Math. Soc., 1950.Google Scholar
  772. [5]
    Goluzin, G.M.: Geometric theory of functions of a complex variable, Amer. Math. Soc., 1969 (translated from the Russian).Google Scholar
  773. [6]
    Belinskiĭ, P.P.: General properties of quasi-conformal mappings, Novosibirsk, 1974, Chapt. 2, Par. 1 (in Russian).Google Scholar
  774. [1]
    Gödel, K.: ‘Ehe Vollständigkeit der Axiomen des logischen Funktionalkalküls’, Monatsh. Math. Physik 37 (1930), 349–360.MATHGoogle Scholar
  775. [2]
    Novicov, P.S.: Elements of mathematical logic, Oliver and Boyd & Acad. Press, 1964 (translated from the Russian).Google Scholar
  776. [3]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  777. [1A]
    Gödel, K.: ‘The consistency of the axiom of choice and of the generalized coninuum hypothesis’, Proc. Nat. Acad Sci. USA 24 (1938), 556–557.Google Scholar
  778. [1B]
    Gödel, K.: ‘Consistency proof for the generalized coninuum hypothesis’, Proc. Nat. Acad Sci. USA 25 (1939), 220–224.Google Scholar
  779. [2]
    Jech, T.J.: Lectures in set theory: with particular emphasis on the method of forcing, Springer, 1971.Google Scholar
  780. [3]
    Mostowski, A.: Constructible sets with applications, North-Holland, 1969.Google Scholar
  781. [4]
    Karp, C.: ‘A proof of the relative consistency of the continuum hypothesis’, in J. Crossley (ed.): Sets, models and recursion theory, North-Holland, 1967, pp. 1-32.Google Scholar
  782. [5]
    Addison, J.W.: ‘Some consequences of the axiom of constructibility’, Fund. Math. 46 (1959), 337–357.MathSciNetMATHGoogle Scholar
  783. [6]
    Novikov, P.S.: ‘On the non-contradictability of certain propositions of descriptive set theory’, Trudy Mat. Inst. Steklov. 38 (1951), 279–316 (in Russian).MATHGoogle Scholar
  784. [7]
    Felgner, U.: Models of ZF-set theory, Springer, 1971.Google Scholar
  785. [A1]
    Devlin, K.J.: Constructibility, Springer, 1984.Google Scholar
  786. [A2]
    Jech, T.: Set theory, Acad. Press, 1978.Google Scholar
  787. [A3]
    Kunen, K.: Set theory. An introduction to independence proofs, North-Holland, 1980.Google Scholar
  788. [A4]
    Gödel, K.: The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory, Princeton Univ. Press, 1940.Google Scholar
  789. [A5]
    Devlin, K.: ‘Constructiblity’, in J. Barwise (ed.): Handbook of mathematical logic, North-Holland, 1977, pp. 453-490.Google Scholar
  790. [1]
    Gödel, K.: ‘Ueber formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I’, Monatsh. Math. Physik 38 (1931), 178–198.Google Scholar
  791. [2]
    Hilbert, D. and Bernays, P.: Grundlagen der Mathematik, 1–2, Springer, 1968–1970.Google Scholar
  792. [3]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  793. [1]
    Gödel, K.: ‘Ueber eine bisher noch nicht benützte Erweiterung des finiten Standpunktes’, Dialectica 12 (1958), 280–287.MathSciNetMATHGoogle Scholar
  794. [A1]
    Bishop, E.: ‘Mathematics as a numerical language’, in A. Kino, J. Myhill and R.E. Vesley (eds.): Intuitionism and Proof Theory, North-Holland, 1970, pp. 53-71.Google Scholar
  795. [A2]
    Troelsta, A.S.: Metamathematical investigations, Springer, 1973, p. 230ff.Google Scholar
  796. [1]
    Vinogradov, I.M.: The method of trigonometric sums in the theory of numbers, Interscience, 1954 (translated from the Russian).Google Scholar
  797. [2]
    Karatsuba, A.A.: Fundamentals of analytic number theory, Moscow, 1975 (in Russian).Google Scholar
  798. [A1]
    Vaughan, R.C.: The Hardy-Littlewood method, Cambridge Univ. Press, 1981.Google Scholar
  799. [A2]
    Halberstam, H. and Richert, H.E.: Sieve methods, Acad. Press, 1974.Google Scholar
  800. [A3]
    Granville, A., Lune, J. van der and Riele, H.J.J. te: ‘Checking the Goldbach conjecture on a vector computer’, in R. Mollin (ed.): Number Theory and Applications. Proc. First Conf. Canadian Number Theory Assoc., Banff, April 1988, Kluwer, 1989. (Also: Mathematical Centre Report NM R8812 (1988)).Google Scholar
  801. [A4]
    Yuan, Wang (ed.): Goldbach conjecture, World Scientific, 1984.Google Scholar
  802. [1]
    Vinogradov, I.M.: The method of trigonometric sums in the theory of numbers, Interscience, 1954 (translated from the Russian).Google Scholar
  803. [2]
    Hua, L.-K.: ‘Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie’, in Enzyklopaedie der Mathematische Wissenschaften mit Einschluss ihrer Anwendungen, Vol. 1, 1959. Heft 13, Teil 1.Google Scholar
  804. [1]
    Golubev, V.V.: Univalent analytic functions with perfect sets of singular points, Moscow, 1916 (in Russian). See also: V.V. Golubev, Single — valued analytic functions. Automorphic functions, Moscow, 1961 (in Russian).Google Scholar
  805. [2]
    Privalov, I.I.: The Cauchy integral, Saratov, 1918 (in Russian).Google Scholar
  806. [3]
    Priwalow, I.I. [I.I. Privalov]: Randeigenschaften analytischer Funktionen, Deutsch. Verlag Wissenschaft., 1956 (translated from the Russian).Google Scholar
  807. [A1]
    Goluzin, G.M.: Geometric theory of functions of a complex variable, Amer. Math. Soc., 1969 (translated from the Russian).Google Scholar
  808. [A1]
    Lint, J.H. van: Introduction to coding theory, Springer, 1982.Google Scholar
  809. [A2]
    Tietäväinen, A.: ‘On the non-existence of perfect codes over finite fields’, SIAM J. Appl. Math. 24 (1973), 88–96.MathSciNetMATHGoogle Scholar
  810. [A3]
    McEliece, R.J., Rodemich, E.R., Rumsey, H. and Welch, L.R.: ‘New upper bounds on the rate of a code via the Delsarte—MacWilliams inequalities’, IEEE Trans. Inform. Theory 23 (1977), 157–166.MathSciNetMATHGoogle Scholar
  811. [A4]
    Tsfasman, M.A., Vladuts, S.G. and Zink, T.: ‘Modular curves, Shimura curves and Goppa codes, better than Varshamov—Gilbert bound’, Math. Nachr. 109 (1982), 21–28.MathSciNetMATHGoogle Scholar
  812. [A5]
    Lekkerkerker, C.G. and Gruber, P.M.: Geometry of numbers, North-Holland, 1987.Google Scholar
  813. [A6]
    Hill, R.: A first course in coding theory, Clarendon Press, 1986.Google Scholar
  814. [A7]
    Lint, J.H. van and Geer, G. van der: Introduction to coding theory and algebraic geometry, Birkhäuser, 1988.Google Scholar
  815. [A8]
    Goppa, V.D.: Geometry and codes, Kluwer, 1988.Google Scholar
  816. [A9]
    Tsfasman, M.A. and Vladuts, S.G.: Algebraic geometric codes, Kluwer, 1989.Google Scholar
  817. [1]
    Gorenstein, D.: ‘An arithmetic theory of adjoint plane curves’, Trans. Amer. Math. Soc. 72 (1952), 414–436.MathSciNetMATHGoogle Scholar
  818. [2]
    Serre, J.-P.: Groupes algébrique et corps des classes, Hermann, 1959.Google Scholar
  819. [3]
    Abramov, L.L. and Golod, E.S.: ‘Homology algebra of the Koszul complex of a local Gorenstein ring’, Math. Notes 9, no. 1 (1971), 30–32. (Mat. Zametki 9, no. 1 (1971), 53-58)Google Scholar
  820. [4]
    Grothendieck, A.: ‘Géométrie formelle et géométrie algébrique’, Sem. Bourbaki 11 (1958–1959).Google Scholar
  821. [5]
    Hartshorne, R.: Local cohomology, a seminar given by A. Grothendieck, Springer, 1967.Google Scholar
  822. [6]
    Hartshorne, R.: Residues and duality, Springer, 1966.Google Scholar
  823. [7]
    Bass, H.: ‘On the ubiquity of Gorenstein rings’, Math. Z. 82 (1963), 8–28.MathSciNetMATHGoogle Scholar
  824. [1]
    Tzitzeica, G.: ‘Sur certaines congruences de droites’, J. Math. Pures Appl. (9) 7 (1928), 189–208.MATHGoogle Scholar
  825. [2]
    Finikov, S.P.: Projective differential geometry, Moscow-Leningrad, 1937 (in Russian).Google Scholar
  826. [A1]
    Bol, G.: Projektive Differential Geometrie, 2, Vandenhoeck & Ruprecht, 1954.Google Scholar
  827. [1]
    Goursat, E.: Cours d’analyse mathématique, 3, Part 1, Gauthier-Villars, 1923.Google Scholar
  828. [2]
    Bitsadze, A.V.: Equations of the mixed type, Pergamon, 1964 (translated from the Russian).Google Scholar
  829. [3]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  830. [4]
    Tricomi, F.G.: Integral equations, Interscience, 1957.Google Scholar
  831. [A1]
    Bourbaki, N.: Algèbre commutative, Hermann, 1961, Chapt. 3. Graduations, filtrations et topologies.Google Scholar
  832. [A2]
    Nastasescu, C. and Oystaeyen, F. van: Graded ring theory, North-Holland, 1982.Google Scholar
  833. [1]
    Cartan, H. and Eilenberg, S.: Homological algebra, Princeton Univ. Press, 1956.Google Scholar
  834. [A1]
    Nâstâsescu, C. and Oystaeyen, F. van: Graded ring theory, North-Holland, 1982.Google Scholar
  835. [1]
    Kochin, N.E.: Vector calculus and initials of tensor calculus, Moscow, 1965.Google Scholar
  836. [2]
    Rashewski, P.K. [P.K. Rashevskiĭ]: Riemannsche Geometrie und Tensoranalyse, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  837. [A1]
    Fleming, W.: Functions of several variables, Addison-Wesley, 1965.Google Scholar
  838. [1]
    Smale, S.: ‘On gradient dynamical systems’, Ann. of Math. (2) 74, no. 1 (1961), 199–206.MathSciNetMATHGoogle Scholar
  839. [A1]
    Dennis, J.E. and Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, 1983.Google Scholar
  840. [A2]
    Fletcher, R.: Practical methods of optimization, Wiley, 1980.Google Scholar
  841. [A3]
    Luenberger, D.G.: Linear and nonlinear programming, Addison-Wesley, 1984.Google Scholar
  842. [1]
    Gram, J.P.: ‘Ueber die Entwicklung reeller Funktionen in Reihen mittelst der Methode der kleinsten Quadraten’, J. Reine Angew. Math. 94 (1883), 41–73.MATHGoogle Scholar
  843. []
    Charlier, C.V.L.: ‘Frequency curves of type A is heterograde statistics’, Ark. Mat. Astr. Fysik 9, no. 25 (1914), 1–17.Google Scholar
  844. [3]
    Mitropol’skiĭ, A.K.: Curves of distributions, Leningrad, 1960 (in Russian).Google Scholar
  845. [A1]
    Cramer, H.: Mathematical methods of statistics, Princeton Univ. Press, 1946, Sect. 17.6.Google Scholar
  846. [1]
    Gram, J.P.: On Raekkeudviklinger bestemmte ved Hjaelp of de mindste Kvadraters Methode, Copenhagen, 1879.Google Scholar
  847. [2]
    Andreev, K.A.: Selected work, Kharkov, 1955 (in Russian).Google Scholar
  848. [3]
    Gantmakher, F.R.: The theory of matrices, Chelsea, reprint, 1977 (translated from the Russian).Google Scholar
  849. [A1]
    Davis, P.J.: Interpolation and approximation, Dover, reprint, 1975.Google Scholar
  850. [A1]
    Schwerdtfeger, H.: Introduction to linear algebra and the theory of matrices, Noordhoff, 1950 (translated from the German).Google Scholar
  851. [1]
    Bar-Hillel, Y., Gaifman, H. and Shamir, E.: ‘Finite-state languages: formal representations and adequacy problems’, Bull. Res. Council Israel 9, sec F, no. 1 (1960), 155–166.MathSciNetGoogle Scholar
  852. [2A]
    Beletskiĭ, M.I.: ‘The relationship between categorical and domination grammars’, Cybernetics 5, no. 4 (1969), 506–512. (Kibernetika (Kiev) 5, no. 4 (1969), 129-135)Google Scholar
  853. [2B]
    Beletskiĭ, M.I.: ‘Relationship between categorical and domination grammars II’, Cybernetics 5, no. 5 (1969), 540–545. (Kibernetika (Kiev) 5, no. 5 (1969), 10-14)Google Scholar
  854. [3]
    Gladkiĭ, A.V.: Formal grammars and languages, Moscow, 1973 (in Russian).Google Scholar
  855. [A1]
    Thomason, R.H. (ed.): Formal philosophy, selected papers from Richard Montague, Yale Univ. Press, 1974.Google Scholar
  856. [A2]
    Benthem, J.F.A.K. van: Essay in logical semantics, Reidel, 1986.Google Scholar
  857. [1]
    Ginsburg, S.: The mathematical theory of context-free languages. McGraw-Hill, 1966.Google Scholar
  858. [A1]
    Hopcroft, J.E. and Ullman, J.D.: Introduction to automata theory, languages and computation, Addison-Wesley, 1979.Google Scholar
  859. [A2]
    Knuth, D.E.: ‘Semantics of context-free languages’, Math. Syst. Theory 2 (1968), 127–145.MathSciNetMATHGoogle Scholar
  860. [A3]
    Aho, A.V. and Ullman, J.D.: The theory of parsing, translation and compiling, 1–2, Prentice-Hall, 1973.Google Scholar
  861. [A4]
    Lewis, H.R. and Papadimitriou, C.H.: Elements of the theory of computation, Prentice-Hall, 1981.Google Scholar
  862. [A5]
    Earley, J.: ‘An effective context-free parsing algorithm’, Commun. ACM 13 (1970), 94–102.MATHGoogle Scholar
  863. [A6]
    Kasami, T.: An effective recognition and syntax algorithm for context-free languages, Report AFCRL-65-758, Air Force Cambridge Research Lab., 1965.Google Scholar
  864. [A7]
    Younger, D.H.: ‘Recognition and parsing context-free languages in time n3’, Inf. and Control 10 (1967), 189–208.MATHGoogle Scholar
  865. [A8]
    Valiant, L.G.: ‘General context-free recognition in less than cubic time’, J. Comput. System Sci. 10 (1975), 308–315.MathSciNetMATHGoogle Scholar
  866. [A9]
    Salomaa, A.: Formal languages, Acad. Press, 1973.Google Scholar
  867. [A1]
    Hopcroft, J.E. and Ulman, J.D.: Introduction to automata theory, languages and computation, Addison-Wesley, 1979.Google Scholar
  868. [A2]
    Lewis, H.R. and Papadimitriou, C.H.: Elements of the theory of computation, Prentice Hall, 1981.Google Scholar
  869. [A3]
    Immerman, N.: ‘Nondetermlnistic space is closed under complementation’, in Proc. 3rd. IEEE Conf. Structure in Complexity Theory. Georgetown June, IEEE, 1988, pp. 112-115.Google Scholar
  870. [A4]
    Szelepcsényi, R.: ‘The method of forcing for nondeterministic automata’, EATCS Bulletin 33 (1987), 96–100.MATHGoogle Scholar
  871. [1]
    Beletskiĭ, M.I.: ‘Context-free and domination grammars and the algorithmic problems connected with them’, Cybernetics 3, no. 4 (1967), 74–80. (Kibernetika (Kiev) 3, no. 4 (1967), 90-97)MathSciNetGoogle Scholar
  872. [2]
    Gladkiĭ, A.V.: Formal grammars and languages, Moscow, 1973 (in Russian).Google Scholar
  873. [A1]
    Melčuk, I. [I.A. Melchuk]: Dependency syntax. Theory and practice, State Univ. New York Press, 1988 (translated from the Russian).Google Scholar
  874. [A1]
    Hopcroft, J.E. and Ullman, J.D.: Introduction to automata theory, languages and computation, Addison-Wesley, 1979.Google Scholar
  875. [1]
    Gross, M. and Lentin, A.: Introduction to formal grammars, Springer, 1970 (translated from the French).Google Scholar
  876. [2]
    Gladkiĭ, A.V.: Formal grammars and languages, Moscow, 1973 (in Russian).Google Scholar
  877. [3]
    Hopcroft, J.E. and Ullman, J.D.: Formal languages and their relation to automata, Addison-Wesley, 1969.Google Scholar
  878. [4]
    Gladkiĭ, A.V. and Dikovskiĭ, A. Ya.: ‘Theory of formal grammars’, J. Soviet Math. 2, no. 5 (1974), 542–564. (Itogi Nauk. i Tekhn. Teor. Veroyatnost. Mat Statist. Teoret. Kibernetika 10 (1972), 107-142)MATHGoogle Scholar
  879. [5]
    Maslov, A.N. and Stotskiĭ, E.D.: ‘Classes of formal grammars’, J. Soviet Math. 6, no. 2 (1976), 189–209. (Itogi Nauk. i Tekhn. Teor. Veroyatnost. Mat. Statist. Teoret. Kibernetika 12 (1975), 156-187)Google Scholar
  880. [6A]
    Stotskiĭ, E.D.: ‘Formal grammars and constraints on derivation’, Problems Inform. Transmission 7, no. 1 (1971), 69–81. (Problemy Peredachi lnformatsiĭ 7, no. 1 (1971), 87-101)Google Scholar
  881. [6B]
    Stotskiĭ, E.D.: ‘Control of the conclusion in formal grammars’, Problems Inform. Transmission 7, no. 3 (1971), 257–270. (Problemy Peredachi Informatsiĭ 7, no. 3 (1971), 87-102)Google Scholar
  882. [A1]
    Salomaa, A.: Formal languages, Acad. Press, 1973.Google Scholar
  883. [A2]
    Hopcroft, J.E. and Ullmann, J.D.: Introduction to automata theory, languages and computation, Addison-Wesley, 1979.Google Scholar
  884. [1]
    Gladkiĭ, A.V.: Formal grammars and languages, Moscow, 1973 (in Russian).Google Scholar
  885. [2]
    Trakhtenbrot, B.A. and Barzdin’, Ya.M.: Finite automata. Behaviour and synthesis, North-Holland, 1973 (translated from the Russian).Google Scholar
  886. [A1]
    Ginsburg, A.: Algebraic theory of automata, Acad. Press, 1968.Google Scholar
  887. [A2]
    Hartmanis, J. and Stearns, R.E.: Algebraic structure theory of sequential machines, Prentice Hall, 1966.Google Scholar
  888. [A3]
    Hopcropt, J.E. and Ullman, J.D.: Introduction to automata theory, languages and computation, Addison-Wesley, 1979.Google Scholar
  889. [A4]
    Ginsburg, S.: The mathematical theory of context-free languages, McGraw-Hill, 1966.Google Scholar
  890. [A5]
    Salomaa, A.: Formal languages, Acad. Press, 1975.Google Scholar
  891. [1]
    Chomsky, N.: News in linguistics, 1962, pp. 412-527 (in Russian).Google Scholar
  892. [2]
    Ginsburg, S. and Partee, B.: ‘A mathematical model of transformational grammars’, Inform. and Control 15 (1969), 297–334.MathSciNetMATHGoogle Scholar
  893. [3]
    Gladkiĭ, A.V. and Mel’chuk, I.A.: Informational questions of semiotics, linguistics and automatic translation, Moscow, 1971, pp. 16-41 (in Russian).Google Scholar
  894. [A1]
    Peters, P.S. and Ritchie, R.W.: ‘On the generative power of transformational grammars’, Information Sciences 6 (1973), 49–83.MathSciNetMATHGoogle Scholar
  895. [A2]
    Chomsky, N.: Aspects of the theory of syntax, M.I.T., 1965.Google Scholar
  896. [A3]
    Chomsky, N.: Lectures on gouvernment and binding, Foris, Dordrecht, 1981.Google Scholar
  897. [A4]
    Bach, E.: An introduction to transformational grammars, Holt, Rinehart, Winston, 1964.Google Scholar
  898. [1]
    Berge, C.: The theory of graphs and their applications, Wiley, 1962 (translated from the French).Google Scholar
  899. [2]
    Ore, O.: Theory of graphs, Amer. Math. Soc., 1962.Google Scholar
  900. [3]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  901. [4]
    Harary, F.: Graph theory, Addison-Welsey, 1969.Google Scholar
  902. [A1]
    Berge, C.: Graphs and hypergraphs, North-Holland, 1973 (translated from the French).Google Scholar
  903. [A2]
    Bondy, J.A. and Murthy, U.S.R.: Graph theory with applications, Macmillan, 1976.Google Scholar
  904. [A3]
    Tutte, W.T.: Graph theory, Addison-Wesley, 1984.Google Scholar
  905. [A4]
    Behzad, M., Chartrand, G. and Foster, L.L.: Graphs and digraphs, Prindle, Weber & Schmidt, 1979.Google Scholar
  906. [A5]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  907. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  908. [A1]
    Biggs, N.: Algebraic graph theory, Cambridge Univ. Press, 1974.Google Scholar
  909. [A2]
    Biggs, N.: Finite groups of automorphisms, Cambridge Univ. Press, 1971.Google Scholar
  910. [A3]
    Frucht, R.: ‘Herstellung von.Graphen mit vorgegebener abstrakter Gruppe’, Compos. Math. 6 (1938), 239–250.MathSciNetGoogle Scholar
  911. [1]
    Ore, O.: Theory of graphs, Amer. Math. Soc., 1962.Google Scholar
  912. [A1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  913. [A2]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  914. [1]
    Harary, A.F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  915. [2]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  916. [A1]
    Lesniak, L. and Oellerman, O.R.: ‘An eulerian exposition’, J. Graph Theory 10 (1986), 277–297.MathSciNetMATHGoogle Scholar
  917. [A2]
    Bermond, J.C.: ‘Hamiltonian graphs’, in L.W. Beineke and R.J. Wilson (eds.): Selected Topics in Graph Theory, Acad Press, Chapt. 6.Google Scholar
  918. [A3]
    Walther, H.-J.: Ten applications of graph theory, Reidel, 1984.Google Scholar
  919. [A4]
    Chen, W.K.: Applied graph theory, North-Holland, 1971.Google Scholar
  920. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  921. [2]
    Ore, O.: Theory of graphs, Amer. Math. Soc., 1962.Google Scholar
  922. [3]
    Shannon, C.E.: ‘A theorem on colouring the lines of a network’, J. Math. Phys. 28 (1949), 148–151.MathSciNetMATHGoogle Scholar
  923. [A1]
    Fiorini, S. and Wilson, R.J.: Edge-colourings of graphs, Pitman, 1977.Google Scholar
  924. [A2]
    Fiorini, S. and Wilson, R.J.: ‘Edge-colourings of graphs’, in L.W. Beineke and R.J. Wilson (eds.): Selected Topics in Graph Theory, Acad. Press, 1978, Chapt. 5.Google Scholar
  925. [A3]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  926. [A4]
    Read, R.C.: ‘An introduction to chromatic polynomials’, J. Comb. Theory 4 (1968), 52–71.MathSciNetGoogle Scholar
  927. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  928. [2]
    Ford, I. and Fulkerson, D.: Flows in networks, Princeton Univ. Press, 1962.Google Scholar
  929. [A1]
    Tutte, W.T.: Connectivity in graphs, Oxford Univ. Press, 1966.Google Scholar
  930. [A2]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  931. [A3]
    Walther, Hj.: Ten applications of graph theory, Reidel, 1984.Google Scholar
  932. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  933. [2]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  934. [3]
    Turán, P.: ‘An extremal problem in graph theory’, Mat. Fiz. Lapok 48 (1941), 436–452 (in Hungarian; German summary).MathSciNetGoogle Scholar
  935. [A1]
    Bollobas, B.: Extremal graph theory, Acad. Press, 1978Google Scholar
  936. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  937. [2]
    Graph theory. Coverings, imbeddings, tournaments, Moscow, 1974, pp. 82-159 (in Russian; translated from the English, the French and the German).Google Scholar
  938. [A1]
    White, A.T. and Beineke, L.W.: ‘Topological graph theory’, in L.W. Beineke and R.J. Wilson (eds.): Selected topics in graph theory, Acad. Press, 1978, Chapt. 2.Google Scholar
  939. [A2]
    White, A.T.: ‘The proof of the Heawood conjecture’, in L.W. Beineke and R.J. Wilson (eds.): Selected topics in graph theory, Acad. Press, 1978, Chapt. 3.Google Scholar
  940. [A3]
    White, A.T.: Graphs, groups and surfaces, North-Holland, 1973.Google Scholar
  941. [A4]
    Ringel, G.: Map colour theorem, Springer, 1974.Google Scholar
  942. [1]
    Hopcroft, J.E. and Tarjan, R.: Isomorphism of planar graphs, Plenum, 1972, pp. 131-152; 187-212.Google Scholar
  943. [2]
    Kelly, P.J.: ‘A congruence theorem for trees’, Pacific J. Math. 7 (1957), 961–968.MathSciNetMATHGoogle Scholar
  944. [A1]
    Read, R.C. and Corneil, D.G.: ‘The graph isomorphism disease’, J. Graph Theory 1 (1977), 339–363.MathSciNetMATHGoogle Scholar
  945. [A2]
    Gati, G.: ‘Further annotated bibliography on the isomorphism disease’, J. Graph Theory 3 (1979), 95–109.MathSciNetMATHGoogle Scholar
  946. [A3]
    Ulam, S.M.: A collection of mathematical problems, Wiley, 1960.Google Scholar
  947. [A4]
    Bondy, J.A. and Hemminger, R.L.: ‘Graph reconstruction — a survey’, J. Graph Theory 1 (1977), 227–268.MathSciNetMATHGoogle Scholar
  948. [A5]
    Nash-Williams, C.St.J.A.: ‘The reconstruction problem’, in L.W. Beineke and R.J. Wilson (eds.): Selected Topics in Graph Theory, Acad. Press, 1978, Chapt. 8.Google Scholar
  949. [A6]
    Hopcroft, J.E. and Tarjan, R.E.: Complexity of computer computations, Plenum, 1972, pp. 131-152; 187-212.Google Scholar
  950. [A7]
    Hopcroft, J.E. and Tarjan, R.E.: ‘Efficient planarity testing’, J. ACM 21 (1974), 549–568.MathSciNetMATHGoogle Scholar
  951. [1]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  952. [2]
    Kozyrev, V.P.: ‘Graph theory’, J. Soviet Math. 2 (1974), 489–519. (Itogi Nauk. i Tekhn. Ser. Teor. Veroyatn. Mat. Stat. Teoret. Kibernet. 10 (1972), 25-75)MathSciNetMATHGoogle Scholar
  953. [3]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  954. [A1]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  955. [A1]
    De Wilde, M.: Closed graph theorems and webbed spaces, Pitman, 1978.Google Scholar
  956. [A2]
    Schaefer, H.H.: Topological vector spaces, Macmillan, 1966.Google Scholar
  957. [1]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  958. [2]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  959. [3]
    Picard, C.F.: Graphs and questionnaires, North-Holland, 1980 (translated from the French).Google Scholar
  960. [A1]
    Harary, F., Norman, R.Z. and Cartwright, D.: Structural models. An introduction to the theory of directed graphs, Wiley, 1965.Google Scholar
  961. [A2]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  962. [1]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  963. [A1]
    Ore, O.: The four-colour problem, Acad. Press, 1967.Google Scholar
  964. [A2]
    Woodall, D.R. and Wilson, R.J.: ‘The Appel—Haken proof of the four-colour theorem’, In L.W. Beineke and R.J. Wilson (eds.): Selected Topics in Graph Theory, Acad. Press, 1978, Chapt. 4.Google Scholar
  965. [A3]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  966. [1]
    Moore, E.F. and Shannon, C.E.: ‘Reliable circuits using less reliable relays, I,II’, J. Franklin Inst. 1 (1960), 109–148.Google Scholar
  967. [2]
    Stepanov, V.E.: Problems in Cybernetics. Proc. Sem. in comb. math., Moscow, 1973, pp. 164-185 (in Russian).Google Scholar
  968. [3]
    Discrete mathematics and mathematical problems in cybernetics, 1, Moscow, 1974 (in Russian).Google Scholar
  969. [4]
    Sapozhenko, A.: ‘The geometric structure of almost all Boolean functions’, Probl. Kibernetiki 30 (1975), 227–261 (in Russian).MATHGoogle Scholar
  970. [A1]
    Erdös, P. and Renyi, A.: ‘On random graphs I’, Publ. Math. Debrecen 6 (1959), 290–297.MathSciNetMATHGoogle Scholar
  971. [A2]
    Erdös, P. and Renyi, A.: ‘On the evolution of random graphs’, Publ. Math. Inst. Hung. Acad. Sci. 5 (1960), 17–61.MATHGoogle Scholar
  972. [A3]
    Bollobas, B. (ed.): Graph theory and combinatorics, Acad. Press, 1984.Google Scholar
  973. [1]
    Euler, L.: Commentationes Arithmetica Collectae, St. Petersburg, 1766, pp. 66-70.Google Scholar
  974. [2]
    Kirchhoff, G.: Poggendorff Annalen 72 (1847), 497–508.Google Scholar
  975. [3]
    Cayley, A.: ‘On the theory of the analytical forms called trees’, in Collected mathematical papers, Vol. 3, Cambridge Univ. Press, 1854, pp. 242–26.Google Scholar
  976. [4]
    König, D.: Theorie der endlichen und unendlichen Graphen, Teubner, reprint, 1986.Google Scholar
  977. [5]
    Berge, C.: The theory of graphs and their applications, Wiley, 1962 (translated from the French).Google Scholar
  978. [6]
    Zykov, A.A.: The theory of finite graphs, 1, Novosibirsk, 1969 (in Russian).Google Scholar
  979. [7]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  980. [8]
    Kozyrev, V.P.: ‘Graph theory’, J. Soviet Math. 2 (1974), 489–519. (Itogi Nauk. i Tekhn. Tear. Veroyat. Mat. Stat. Teor. Kibern. 10 (1972), 25-74)MathSciNetMATHGoogle Scholar
  981. [9]
    Harary, F. and Palmer, E.: Graphical enumeration, Acad. Press, 1973.Google Scholar
  982. [A1]
    Biggs, N.L., Lloyd, E.K. and Wilson, R.J.: Graph theory 1736–1936, Clarendon Press, 1976.Google Scholar
  983. [A2]
    Wilson, R.J.: Introduction to graph theory, Longman, 1985.Google Scholar
  984. [A3]
    Walther, Hj.: Ten applications of graph theory, Reidel, 1984.Google Scholar
  985. [1]
    Markov, A.A.: Theory of algorithms, Israel Progr. Sci. Transl., 1961 (translated from the Russian). Also: Trudy Mat. Inst. Steklov. 42 (1954).Google Scholar
  986. [2]
    Markov, A.A. and Nagorny, N.M. [N.M. Nagornyĭ]: The theory of algorithms, Kluwer Acad. Publ., 1988 (translated from the Russian).Google Scholar
  987. [1]
    Hodge, W.V.D. and Pedoe, D.: Methods of algebraic geometry, 2, Cambridge Univ. Press, 1952.Google Scholar
  988. [2]
    Husemoller, D.: Fibre bundles, McGraw-Hill, 1966.Google Scholar
  989. [3A]
    Borel, A.: ‘Sur la cohomogie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts’, Ann of Math. 57 (1953), 115–207.MathSciNetMATHGoogle Scholar
  990. [3B]
    Borel, A.: ‘La cohomologie mod 2 de certains espaces homogènes’, Comm. Math. Heb. 27 (1953), 165–197.MathSciNetMATHGoogle Scholar
  991. [3C]
    Borel, A. and Serre, J.-P.: ‘Groupes de Lie et puissances réduites de Steenrod’, Amer. J. Math. 75 (1953), 409–448.MathSciNetMATHGoogle Scholar
  992. [4]
    Chern, S.S.: Complex manifolds without potential theory, Springer, 1979.Google Scholar
  993. [A1]
    Griffiths, P.A. and Harris, J.E.: Principles of algebraic geometry, 1–2, Wiley, 1978.Google Scholar
  994. [A2]
    Wells, R.O., jr.: Differential analysis on complex manifolds, Springer, 1980.Google Scholar
  995. [1]
    Sretenskiĭ, L.N.: Theory of the Newton potential, Moscow-Leningrad, 1946 (in Russian).Google Scholar
  996. [2]
    Duboshin, G.N.: The theory of attraction, Moscow, 1961 (in Russian).Google Scholar
  997. [3]
    Einstein, A.: Selected works, Vol. 1–2, Moscow, 1966 (in Russian).Google Scholar
  998. [4]
    Fock, V.A. [V.A. Fok]: The theory of space, time and gravitation, Macmillan, 1954 (translated from the Russian).Google Scholar
  999. [5]
    Weber, J.: General relativity and gravitational waves, Interscience, 1961.Google Scholar
  1000. [6]
    Synge, J.L.: Relativity: the general theory, North-Holland & Interscience, 1960.Google Scholar
  1001. [7]
    Petrov, A.Z.: New methods in general relativity theory, Moscow, 1966 (in Russian).Google Scholar
  1002. [8]
    Karal’nikova, I.I.: ‘The history of the development of the pre-relativistic interpretations on the nature of gravitation’, Uchen. Zap. Yaroslavsk. Fed Inst. Kafedra Astron. i Teoret. Fiz. 56 (1963) (in Russian).Google Scholar
  1003. [9]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics, Moscow, 1967 (in Russian).Google Scholar
  1004. [10]
    Petrov, A.Z.: ‘The general theory of relativity’, in The development of physics in the USSR, Vol. 1, Moscow, 1967 (in Russian).Google Scholar
  1005. [11]
    Zel’dovich, Ya.B. and Novikov, I.D.: Relativistic astrophysics, 1. Stars and relativity, Chicago, 1971 (translated from the Russian).Google Scholar
  1006. [12]
    Zel’dovich, Ya.B. and Novicov, I.D.: Relativistic astrophysics, 2. Structure and evolution of the universe, Chicago, 1983 (translated from the Russian).Google Scholar
  1007. [13]
    Isaacson, R.A.: Phys. Rev. 166 (1968), 1263.Google Scholar
  1008. [14]
    Isaacson, R.A.: Phys. Rev. 166 (1968), 1272.Google Scholar
  1009. [A1]
    McMillan, W.D.: The theory of the potential, McGraw-Hill, 1930.Google Scholar
  1010. [A2]
    Jammer, M.: Concepts of force, Harvard Univ. Press, 1957. Especially Chapt. 10.Google Scholar
  1011. [A3]
    Cohen, I.B.: The ‘principia’, universal gravitation, and the ‘Newtonian style’ in relation to the Newtonian revolution in science’, in Z. Bechler (ed.): Contemporary Newtonian research, Reidel, 1982, pp. 21-108.Google Scholar
  1012. [A4]
    Westfall, R.S.: Force in Newtonian physics, Macdonald, 1971.Google Scholar
  1013. [A5]
    Hulse, R.A. and Taylor, J.H.: Astrophysics J. Lett. 195 (1975), L51.Google Scholar
  1014. [A6]
    Shapiro, S.L. and Teukolsky, S.A.: Black holes, white dwarfs and neutron stars, Wiley, 1983, p. 479.Google Scholar
  1015. [A7]
    DeWitt, C. and DeWitt, B. (eds.): Relativity, groups and topology, Gordon & Breach, 1964.Google Scholar
  1016. [A8]
    Weyl, H.: Space-Time-Matter, Dover, reprint, 1950 (translated from the German).Google Scholar
  1017. [1]
    Einstein, A.: Selected works, 1–2, Moscow, 1966 (in Russian).Google Scholar
  1018. [2]
    Misner, C.W., Thorne, K.S. and Wheeler, J.A.: Gravitation, Freeman, 1973.Google Scholar
  1019. [3]
    Kramer, D., Stephani, H., MacCallum, M. and Herlt, E.: Exact solutions of Einstein’s field equations, Cambridge Univ. Press, 1980.Google Scholar
  1020. [4]
    Petrov, A.Z.: Einstein spaces, Pergamon, 1969 (translated from the Russian).Google Scholar
  1021. [5]
    Hawking, S.W. and Elus, G.F.R.: The large-scale structure of space-time, Cambridge Univ. Press, 1973.Google Scholar
  1022. [6]
    Held, A. (ed.): General relativity and gravitation. One hundred years after the birth of Albert Einstein, 1–2, Plenum, 1980.Google Scholar
  1023. [A1]
    Kramer, D. and Neugebauer, G.: Båcklund transformations in general relativity, Lect. notes in physics, 205, Springer, 1984, pp. 1-25.Google Scholar
  1024. [A2]
    Hauser, I.: On the homogeneous Hilbert problem for effecting Kinnersley—Chitre transformations, Lect. notes in physics, 205, Springer, 1984, pp. 128-175.Google Scholar
  1025. [A3]
    Xanthopoulos, B.C.: Superposition of solutions in general relativity, Lect. notes in physics, 239, Springer, 1985, pp. 109-117.Google Scholar
  1026. [A4]
    Chinea, F.J.: Vector Båcklund transformations and associated superposition principle, Lect. notes in physics, 205, Springer, 1984, pp. 55-67.Google Scholar
  1027. [A5]
    Ernst, F.J.: The homogeneous Hilbert problem: practical application, Lect. notes in physics, 205, Springer, 1984, pp. 176-185.Google Scholar
  1028. [A6]
    Xanthopoulos, B.C.: Symmetries and solutions of the Einstein equations, Lect. notes in physics, 239, Springer, 1985, pp. 77-108.Google Scholar
  1029. [A7]
    Schmidt, B.G.: The Geroch group is a Banach Lie group, Lect. notes in physics, 205, Springer, 1984, pp. 113-127.Google Scholar
  1030. [1]
    Vinogradov, I.M.: Elements of number theory, Dover, 1954 (translated from the Russian).Google Scholar
  1031. [2]
    Bukhshtab, A.A.: Number theory, Moscow, 1966 (in Russian).Google Scholar
  1032. [3]
    Markushevich, A.I.: Division with remainder in arithmetic and algebra, Moscow-Leningrad, 1949 (in Russian).Google Scholar
  1033. [4]
    Faure, R., Kaufman, A. and Denis-Papin, M.: Mathématique nouvelle, Dunod, 1964.Google Scholar
  1034. [5]
    Lang, S.: Algebra, Addison-Wesley, 1974.Google Scholar
  1035. [6]
    Ireland, K. and Rosen, M.: A classical introduction to modern number theory, Springer, 1982.Google Scholar
  1036. [A1]
    Waerden, B.L. van der: Algebra, 1, Springer, 1967 (translated from the German).Google Scholar
  1037. [1]
    Green, J.: ‘On the structure of semigroups’, Ann. of Math. 54 (1951), 163–172.MathSciNetMATHGoogle Scholar
  1038. [2]
    Lyapin, E.S.: Semigroups, Amer. Math. Soc., 1974 (translated from the Russian).Google Scholar
  1039. [3]
    Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups, 1–2, Amer. Math. Soc., 1961–1967.Google Scholar
  1040. [4]
    The algebraic theory of automata, languages and semi-groups, Moscow, 1975 (in Russian; translated from the English).Google Scholar
  1041. [5]
    Hofmann, K.H. and Mostert, P.: Elements of compact semigroups, C.E. Merrill, Columbus, Ohio, 1966.Google Scholar
  1042. [1]
    Green, G.: An essay on the application of mathematical analysis to the theories of electricity and magnetism, Nottingham, 1828. Reprint: Mathematical papers, Chelsea, reprint, 1970, pp. 1-82.Google Scholar
  1043. [2]
    Maxwell, J.: Selected works on the theory of electromagnetic fields, Moscow, 1954 (in Russian; translated from the English).Google Scholar
  1044. [3]
    Smirnov, V.I.: A course of higher mathematics, 2, Addison-Wesley, 1964 (translated from the Russian).Google Scholar
  1045. [4]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  1046. [5]
    Vladimirov, V.S.: Equations of mathematical physics, Mir, 1984 (translated from the Russian).Google Scholar
  1047. [6]
    Sobolev, S.L.: Partial differential equations of mathematical physics, Pergamon, 1964 (translated from the Russian).Google Scholar
  1048. [7]
    Miranda, C.: Partial differential equations of elliptic type, Springer, 1970 (translated from the Italian).Google Scholar
  1049. [8]
    Dunford, N. and Schwartz, J.T.: Linear operators. Spectral theory, 2, Interscience, 1963.Google Scholar
  1050. [9]
    Lions, J.L. and Magenes, E.: Non-homogenous boundary value problems and applications, 1–2, Springer, 1972 (translated from the French).Google Scholar
  1051. [1]
    Naĭmark, M.A.: Lineare Differentialoperatoren, Akademie-Verlag, 1960 (translated from the Russian).Google Scholar
  1052. [2]
    Keldysh, M.V.: ‘On the characteristic values and characteristic functions of certain classes of non-self-adjoint equations’, Dokl. Akad. Nauk. SSSR 77, no. 1 (1951), 11–14 (in Russian).MATHGoogle Scholar
  1053. [3]
    Sobolev, V.V.: A course in theoretical astrophysics, Moscow, 1967 (in Russian).Google Scholar
  1054. [4]
    Bers, L., John, F. and Schechter, M: Partial differential equations, Interscience, 1964.Google Scholar
  1055. [5]
    Gårding, L.: ‘Dirichlet’s problem for linear elliptic partial differential equations’, Math. Scand. 1, no. 1 (1953), 55–72.MathSciNetMATHGoogle Scholar
  1056. [6]
    Friedman, A.: Partial differential equations of parabolic type, Prentice-Hall, 1964.Google Scholar
  1057. [7]
    Eĭdel’man, S.D.: Parabolic systems, North-Holland, 1969 (translated from the Russian).Google Scholar
  1058. [A1]
    Hale, J.K.: Ordinary differential equations, Wiley, 1980.Google Scholar
  1059. [A2]
    Garabedian, P.R.: Partial differential equations, Wiley, 1964.Google Scholar
  1060. [1]
    Stoĭlov, S.: The theory of functions of a complex variable, 1–2, Moscow, 1962 (in Russian; translated from the Rumanian).Google Scholar
  1061. [2]
    Nevanlinna, R.: Uniformisierung, Springer, 1953.Google Scholar
  1062. [3]
    Brélot, M: Eléments de la théorie classique du potentiel, Centre Docum. Univ. Paris, 1959.Google Scholar
  1063. [A1]
    Helms, L.L.: Introduction to potential theory, Wiley (Interscience), 1969.Google Scholar
  1064. [A2]
    Janssen, K.: ‘On the existence of a Green function for harmonic spaces’, Math. Annalen 208 (1974), 295–303.MATHGoogle Scholar
  1065. [A3]
    Landkof, N.S. [N.S. Landkov]: Foundations of modern potential theory, Springer, 1972 (translated from the Russian).Google Scholar
  1066. [A4]
    Bedford, E.: Survey of pluri-potential theory, forthcoming.Google Scholar
  1067. [A5]
    Cegrell, U.: Capacities in complex analysis, Vieweg, 1988.Google Scholar
  1068. [A6]
    Demailly, J.P.: ‘Mesures de Monge—Ampère et mesures pluriharmoniques’, Math. Z. 194 (1987), 519–564.MathSciNetMATHGoogle Scholar
  1069. [1]
    Bogolyubov, N.N. and Tyablikov, S.V.: ‘Retarded and advanced Green functions in statistical physics’, Soviet Phys. Dokl. 4 (1960), 589–593. (Dokl. Akad. Nauk SSSR 126 (1959), 53)Google Scholar
  1070. [2]
    Zubarev, D.N.: ‘Double-time Green functions in statistical physics’, Soviet Phys. Uspekhi 3 (1960), 320–345. (Uspekhi Fiz. Nauk 71 (1960), 71-116)MathSciNetGoogle Scholar
  1071. [3]
    Bogolyubov, jr., N.N. and Sadovnikov, B.I.: Zh. Eksperim. Tear. Fiz. 43, no. 8 (1962), 677.Google Scholar
  1072. [4]
    Bogolyubov, jr., N.N. and Sadovnikov, B.I.: Some questions in statistical mechanics, Moscow, 1975 (in Russian).Google Scholar
  1073. [5]
    Statistical physics and quantum field theory, Moscow, 1973 (in Russian).Google Scholar
  1074. [1]
    Landkof, N.S. [N.S. Landkov]: Foundations of modern potential theory, Springer, 1972, Chapt. 1 (translated from the Russian).Google Scholar
  1075. [2]
    Brélot, M. and Choquet, G.: ‘Espaces et lignes de Green’, Ann. Inst. Fourier 3 (1952), 199–263.Google Scholar
  1076. [1]
    Brélot, M.: On topologies and boundaries in potential theory, Springer, 1971.Google Scholar
  1077. [2]
    Brélot, M. and Choquet, G.: ‘Espaces et lignes de Green’, Ann. Inst. Fourier 3 (1952), 199–263.Google Scholar
  1078. [1]
    Berezin, I.S. and Zhidkov, N.P.: Computing methods, Pergamon, 1973 (translated from the Russian).Google Scholar
  1079. [A1]
    Brass, H.: Quadraturverfahren, Vandenhoeck & Ruprecht, 1977.Google Scholar
  1080. [A2]
    Brunner, H. and Houwen, P.J. van der: The numerical solution of Volterra equations, North-Holland, 1986.Google Scholar
  1081. [A3]
    Brunner, H. and Lambert, J.D.: ‘Stability of numerical methods for Volterra integro-differential equations’, Computing 12 (1974), 75–89.MathSciNetMATHGoogle Scholar
  1082. [A4]
    Matthys, J.: ‘A stable linear multistep method for Volterra integro-differential equations’, Numer. Math. 27 (1976), 85–94.MathSciNetMATHGoogle Scholar
  1083. [A5]
    Steinberg, J.: ‘Numerical solution of Volterra integral equations’, Numer. Math. 19 (1972), 212–217.MathSciNetMATHGoogle Scholar
  1084. [A6]
    Wolkenfelt, P.H.M.: ‘The construction of reducible quadrature rules for Volterra integral and integro-differential equations’, IMA J. Numer. Anal. 2 (1982), 131–152.MathSciNetMATHGoogle Scholar
  1085. [A1]
    Lapodus, L. and Pinder, G.: Numerical solution of partial differential equations in science and engineering, Wiley, 1982.Google Scholar
  1086. [1]
    Gronwall, T.H.: ‘Summation of series and conformal mapping’, Ann. of Math. 33, no. 1 (1932), 101–117.MathSciNetGoogle Scholar
  1087. [1]
    Grothendieck, A.: ‘Sur quelques points d’algèbre homologique’, Tôhoku Math. J. (2) 9 (1957), 119–221.MathSciNetMATHGoogle Scholar
  1088. [2]
    Bucur, I. and Deleanu, A.: Introduction to the theory of categories and functors, Wiley, 1968.Google Scholar
  1089. [3]
    Popesco, N. [N. Popescu] and Gabriel, P.: ‘Characterisation des catégories abéliennes avec générateurs et limites inductives exactes’, C.R. Acad. Sci. 258 (1964), 4188–4190.MathSciNetMATHGoogle Scholar
  1090. [A1]
    Popescu, N.: Abelian categories with applications to rings and modules, Acad. Press, 1973.Google Scholar
  1091. [1]
    Bucur, I. and Deleanu, A.: Introduction to the theory of categories and functors, Wiley, 1968.Google Scholar
  1092. [2]
    Grothendieck, A.: Technique de descente et théorèmes d’existence en géométrie algébrique, II’, Sem. Bourbaki Exp. 195 (1960).Google Scholar
  1093. [A1]
    MacLane, S.: Categories for the working mathematician, Springer, 1971.Google Scholar
  1094. [A2]
    Yoneda, N.: ‘On the homology theory of modules’, J. Fac. Sci. Tokyo. Sec. I 7 (1954), 193–227.MathSciNetMATHGoogle Scholar
  1095. [1]
    Swan