Thermal Conductivity of a Glassy Metal at Low Temperatures

  • J. R. Matey
  • A. C. Anderson


The phonon thermal conductivity of an amorphous PdSi metallic alloy has been measured and found to have the magnitude and temperature dependence characteristic of non-crystalline dielectric materials.


Measured Electrical Resistivity Thermal Phonon Phonon Thermal Conductivity Residual Resistivity Ratio Debye Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Zeller, and R. O. Pohl, Phys. Rev. B4, 2029 (1971).CrossRefGoogle Scholar
  2. 2.
    For a general review of the problem, see H. Böttger, Phys.Google Scholar
  3. Status Solidi (B) 62, 9 (1974), and papers cited therein.Google Scholar
  4. 3.
    M. P. Zaitlin, and A. C. Anderson, Phys. Rev. Lett. 33, 1158 (1974), and papers cited therein.Google Scholar
  5. 4.
    P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).CrossRefGoogle Scholar
  6. 5.
    W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).CrossRefGoogle Scholar
  7. 6.
    P. Duwez, R. H. Willens, and R. C. Crewdson, J. Appl. Phys. 36, 2267 (1965).CrossRefGoogle Scholar
  8. 7.
    H. S. Chen, and D. Turnbull, Acta Metall. 17, 1021 (1969).CrossRefGoogle Scholar
  9. 8.
    Golding, B. G. Bagley, and F. S. L. Hsu, Phys. Rev. Lett. 29, 68 (1972).CrossRefGoogle Scholar
  10. 9.
    The crystalline “phase” may be heterogeneous. See, for example, C.-P. Chou and D. Turnbull, J. Non-Cryst. Solids 17, 169 (1975), and papers cited therein.Google Scholar
  11. 10.
    J. Dixmier, J. Phys. (Paris) 35, C4–11 (1974).CrossRefGoogle Scholar
  12. 11.
    S. R. Herd, and P. Chaudhari, Phys. Status Solidi A 26, 627 (1974).CrossRefGoogle Scholar
  13. 12.
    D. E. Polk, Scripta Metall. 4, 117 (1970).CrossRefGoogle Scholar
  14. 13.
    H. S. Chen, and W. H. Haemmerle, J. Non-Cryst. Solids 11, 161 (1972).CrossRefGoogle Scholar
  15. 14.
    Alloy #4614, Allied Chemical Corporation, Morristown, New Jersey.Google Scholar
  16. 15.
    We are grateful to M. P. Zaitlin for suggesting this approach.Google Scholar
  17. 16.
    G. J. Sellers, and A. C. Anderson, Rev. Sci. Instrum. 45, 1256 (1974).CrossRefGoogle Scholar
  18. 17.
    M. P. Zaitlin, L. M. Scherr, and A. C. Anderson (to be published).Google Scholar
  19. 18.
    A. C. Anderson, and S. G. O’Hara, J. Low Temp. Phys. 15, 323 (1974).CrossRefGoogle Scholar
  20. 19.
    R. B. Stephens, Phys. Rev. B8, 2896 (1973). For Se we use the acoustic velocities found in J. C. Lasjaunias, R. Maynard, and D. Thoulouze, Solid State Commun. 10, 215 (1972). For As2S3 we use the acoustic velocities reported by D. Ng and R. J. Sladek, Phys. Rev. B 11, 4017 (1975).Google Scholar
  21. 20.
    Figures 2 and 3 also suggest that a rough linear relationship should exist between C1 /T and (C3 − CD)/T3, which indeed is true.Google Scholar
  22. 21.
    L. C. Lasjaunias, and D.I Thoulouze, Solid State Commun. 14, 957 (1974).Google Scholar
  23. 22.
    M. P. Zaitlin, and A. C. Anderson (to be published).Google Scholar
  24. 23.
    S. Berry, and W. C. Pritchet, J. Appl. Phys. 44, 3122 (1973).CrossRefGoogle Scholar
  25. 24.
    M. Barmatz, and H. S. Chen, Phys. Rev. B9, 4073 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • J. R. Matey
    • 1
  • A. C. Anderson
    • 1
  1. 1.Department of Physics and Materials Research LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations