Influence of Pressure on the Thermal Conductivity of Polymer Glasses

  • R. S. Frost
  • R. Y. S. Chen
  • R. E. BarkerJr.


The influence of pressure on the thermal conductivity K of four vitreous poly(alkyl methacrylate) polymers has been measured by steady state techniques. The measurements were made under pressures up to 2Kbars and over a temperature range between 173 and 300°K. For each member of the homologous series K was found to increase with applied pressure. Shifts in thermal conductivity transition temperatures (attributed to glass transition phenomena) of 25, 26 and 16°C per Kbar of applied pressure were observed for PMMA, PEMA and PnBMA. A quantitative model for the pressure dependence of K is presented. By extending the hole theory of liquids to temperatures below the glass transition, an equation of state is obtained and an expression for the pressure dependence of K is then formulated from a consideration of the anharmonicity associated with the segmental vibrations. The resulting equation ΔK/K = γGfo{1−exp(−P/B*)}, where γG is the Grüneisen parameter, fo is the fractional free volume and B* = KTg/Vo, is compared with experimental results for the poly (alkyl methacrylates).


Thermal Conductivity Butyl Methacrylate Polymer Glass Hole Theory Fractional Free Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Barker, Jr., J. Appl. Phys., 38, 4234 (1967).CrossRefGoogle Scholar
  2. 2.
    R. E. Barker, Jr., R. Chen, J. Chem. Phys. 53, 2616 (1970).CrossRefGoogle Scholar
  3. 3.
    P. G. Klemens, Proc. Roy. Soc. (London) A68, 1113 (1955).Google Scholar
  4. 4.
    P. Carruthers, Rev. Mod. Phys., 33, 92 (1961).CrossRefGoogle Scholar
  5. 5.
    K. Eiermann, J. Polym. Sci., Pt. C6, 157 (1964).Google Scholar
  6. 6.
    G. K. Chang and R. E. Jones, Phys. Rev. 126, 2055 (1962).CrossRefGoogle Scholar
  7. 7.
    W. Reese, J. Appl. Phys. 37, 3959 (1966).CrossRefGoogle Scholar
  8. 8.
    D. Hansen and B. D. Washo, Kolloid-Z. 210, 111 (1966).CrossRefGoogle Scholar
  9. 9.
    R. Berman, Proc. Roy. Soc. (London) A208, 90 (1951).CrossRefGoogle Scholar
  10. 10.
    R. Koulouch and R. Brown, J. Appl. Phys. 39, 3999 (1968).CrossRefGoogle Scholar
  11. 11.
    W. Reese and J. E. Tucker, J. Chem. Phys. 43, 105 (1965).CrossRefGoogle Scholar
  12. 12.
    K. Eiermann, Kunstoffe 55, 355 (1965).Google Scholar
  13. 13.
    P. Lohe, Kolloid-Z. Z. Polyin 203, 115 (1965).CrossRefGoogle Scholar
  14. 14.
    R. Chen and R. E. Barker, Jr., J. Biomed. Mat. Res. 6, 147 (1972).CrossRefGoogle Scholar
  15. 15.
    J. Powles, B. Hunt and D. Sandiford, Polymer 5, 505 (1964).CrossRefGoogle Scholar
  16. 16.
    T. J. Kawai, Phys. Soc. Japan 16 1220 (1961).CrossRefGoogle Scholar
  17. 17.
    J. Hirose and Y. Wada, Rep. Polym. Phys. IX, 287 (1966).Google Scholar
  18. 18.
    A. Zosel, Kolloid-Z. 199, 133 (1964).Google Scholar
  19. 19.
    P. Andersson and G. Backstrom, High Temp.-High Press. 4, 101 (1972)Google Scholar
  20. P. Andersson and G. Backstrom, J. Appl. Phys. 44, 2601 (1973).CrossRefGoogle Scholar
  21. 20.
    P. Andersson and B. Sundqvist, J. Polym. Sci 13, 243 (1975).Google Scholar
  22. 21.
    P. J. Flory, Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, New York, 1953.Google Scholar
  23. 22.
    S. M. Aharoni, J. Polym. Sci. 42, 795 (1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • R. S. Frost
    • 1
  • R. Y. S. Chen
    • 1
  • R. E. BarkerJr.
    • 1
  1. 1.Department of Materials Science CharlottesvilleUniversity of VirginiaUSA

Personalised recommendations