Advertisement

The Timing of Reproduction to Distinct Spring Tide Situations in the Intertidal Insect Clunio

  • Dietrich Neumann
Part of the NATO ASI Series book series (NSSA, volume 151)

Abstract

At coasts with a strong semidiurnal tidal regime and lunar-semimonthly modulation of the tide’s amplitude, characteristic tidal situations reoccur periodically every 14–15 days about a specific time of day which is characteristic for a given location on a coast-line. One of the most effective situations is the time of spring low water when an extremely wide range of the midlittoral zone becomes exposed for some hours during the days around the time of full and new moon. However, the temporal characterics are correspondingly similar for any other phase of the semimonthly tidal pattern, e.g. the neap ebb tide at about the time of the quarters of the moon.

Keywords

Tidal Cycle Spring Tide Tidal Factor Eclosion Rhythm Lunar Timing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff, J., 1960, Exogenous and endogenous components in circadian rhythms. Cold Spr. Harb. Symp. quant. Biol. 25, 11–28.CrossRefGoogle Scholar
  2. Aschoff, J., 1978, Circadian rhythms within and outside their ranges of entrainment, pp. 172–181 in: “Environmental endocrinology”, A. Assenmacher and D. Farmer eds., Springer-Verlag, Berlin-Heidelberg-New York.CrossRefGoogle Scholar
  3. Bunning, E., 1977, Die physiologische Uhr. Circadiane Rhythmik und Biochronometrie. 176 p., Springer Verlag, Berlin-Heidelberg-New York.CrossRefGoogle Scholar
  4. Franke, H.-D., 1985, On a clocklike mechanism timing lunar-rhythmic reproduction in Typosyllis prolifera (Polychaeta). J. Comp. Physiol. A, 156: 553–561.CrossRefGoogle Scholar
  5. Franke, H.-D., 1986, The role of light and endogenous factors in the timing of the reproductive cycle of Typosyllis prolifera and some other polychaetes. Amer. Zool., 26: 433–445.Google Scholar
  6. Heimbach, F., 1978, Energence times of the intertidal midge Clunio marinus (Chironomidae) at places with abnormal tides, pp. 263–270 in: “Physiology and behaviour of marine organisms”, D.S. McLusky and A. J. Berry ed., Pergamon Press, Oxford and New York.CrossRefGoogle Scholar
  7. Krüger, M. u. D. Neumann, 1983, Die Temperaturabhängigkeit semilunarer und diumaler Schlüpf rhythmen bei der intertidalen Mücke Clunio marinus (Diptera, Chironomidae). Helgoländer Meeresunters. 36, 427–464.CrossRefGoogle Scholar
  8. Neumann, D., 1966, Die lunare und tägliche Schlüpfperiodik der Mücke Clunio. Steuerung und Abstimmung auf die Gezeitenperiodik. Z. vergl.Physiol. 53, 1–61 (1966).CrossRefGoogle Scholar
  9. Neumann, D., 1968, Die Steuerung einer semilunaren Schlüpfrhythmik mit Hilfe eines künstlichen Gezeitenzyklus. Z. vergl. Physiol. 60, 63–78.CrossRefGoogle Scholar
  10. Neumann, D., 1976 a, Adaptations of chironomids to intertidal environments. Ann. Rev. Entomol. 21, 387–414.CrossRefGoogle Scholar
  11. Neumann, D., 1976 b, Mechanismen für die zeitliche Anpassung von Entwicklungsleistungen an den Gezeitenzyklus. Verh. Dtsch. Zool. Ges. 1976: 9–28.Google Scholar
  12. Neumann, D., 1978, Entrainment of a semilunar rhythm by simulated tidal cycles of mechanical disturbance. J.exp.mar.Biol .Ecol. 35, 73–85 .CrossRefGoogle Scholar
  13. Neumann, D., 1981 a, Synchronization of reproduction in marine insects by tides, pp. 21–35 in: “Advances in Invertebrate Reproduction”. Clark Jr. W. H., Adams, T.S. eds., Elsevier/Nbrthholland, New York, Amsterdam, Oxford.Google Scholar
  14. Neumann, D., 1981 b, Tidal and lunar rhythms, pp. 351–380 in: “Biological Rhythms. Handbook of Behavioral Neurobiology”, J. Aschoff, Vol. 4, Plenum Press, New York and London.Google Scholar
  15. Neumann, D., 1983, Die zeitliche Programmierung von Tieren auf periodische Umweltbedingungen. Rhein.-Westf. Akademie d. Wissenschaften, Vorträge N 324, 31–68.Google Scholar
  16. Neumann, D., 1986, Life cycle strategy of an intertidal midge between subtropic and arctic latitudes, pp 3–19, in: “The Evolution of Insect Life Cycles. Proceedings in Life Sciences”. Taylor, Karban eds., Springer Verlag, Berlin-Heidelberg-New York.CrossRefGoogle Scholar
  17. Neumann, D., 1987, Tidal and lunar rhythmic adaptations of reproductive activities in invertebrate species, pp. 152–170 in: “Comparative Physiology of Environmental Adaptations. 8th. ESCPB-Conference in Strasbourg 1986”, P. Pevet ed., Karger-Basel, Vol. III.Google Scholar
  18. Neumann, D.; F. Heimbach, 1979, Time cues for semilunar reproduction rhythms in European populations of Clunio marinus. I. The influences of tidal cycles of mechanical disturbance, pp. 423–433 in: “Cylic Phenomena in marine plants and aniinals”, Naylor, E., Hartnoll, R.G. eds., Pergamon Press, Oxford and New York.CrossRefGoogle Scholar
  19. Neumann, D.; F. Heimbach, 1984, Time cues for semilunar reproduction rhythms in European populations of Clunio marinus. II. The influence of tidal temperature cycles. Biol. Bull. 166: 509–524.CrossRefGoogle Scholar
  20. Neumann, D.; F. Heimbach, 1985, Circadian range of entrainment in the semilunar eclosion rhythm of the marine insect Clunio marinus. J. Insect Physiol. 31: 549–557.CrossRefGoogle Scholar
  21. Neumann, D.; Krüger, M., 1985, Combined effects of photoperiod and temperature on the diapause of an intertidal insect. Qecologia (Ber1.) 67, 154–156.CrossRefGoogle Scholar
  22. Oka, H.; Hashimoto, H., 1959, Lunare Periodizität in der Fortpflanzung einer pazifischen Art von Clunio (Diptera, Chironomidae). Biol. Zbl. 78, 545–559.Google Scholar
  23. Pittendrigh, C.S., 1967, Circadian systems. I. The driving oscillation and its assay in Drosophila pseudoobscura. Prod. Nat. Acad. Sci. 58: 1762–1767.CrossRefGoogle Scholar
  24. Pittendrigh, C. S., 1981, Circadian systems: general perspective, pp. 57–80 in: “Biological Rhythms. Handbook of Behavioral Neurobiology”, Vol. 4. J. Aschoff, ed., Plenum Press, New York, London.Google Scholar
  25. Saigusa, M. ; Hidaka, T., 1978, Semilunar rhythm in the zoea-release activity of the land crab Sesarma. Qecologia (Berl). 37: 163–176.Google Scholar
  26. Saigusa, M., 1980, Entrainment of a semilunar rhythm by a simulated moonlight cycle in the terrestrical crab, Sesarma haematocheir. Qecologia (Berl.) 46: 38–44.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Dietrich Neumann
    • 1
  1. 1.University of KölnWest Germany

Personalised recommendations