Skip to main content

Part of the book series: Mathematical Concepts and Methods in Science and Engineering ((MCSENG,volume 37))

Abstract

The topic of numerical methods in multicriteria optimization lends itself to many interpretations, and, of course, much has been written on the subject. This chapter will not be a survey of the numerical techniques of multicriteria optimization (MCO). Those interested in such a work should see, for example, the book of Hwang and Masud (Ref. 1). Nor will this chapter contain comparisons of the numerical efficiency of a variety of MCO algorithms. Instead, this work will be on my views and experience in numerically analyzing “real” linear MCO problems and the mathematics necessary for such an analysis. Of course, “real” means MCO problems as I have encountered them in applications. Imaginary (or unreal) must therefore refer to all the rest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hwang, C.-L., and Masud, A. S. Md., Multiple Objective Decision Making— Methods and Applications, Lecture Notes in Economics and Mathematical Systems, No. 164, Springer-Verlag, New York, 1979.

    Book  MATH  Google Scholar 

  2. Dauer, J. P., and Krueger, R. J., Multiobjective Screening Model for Water Resources Planning, Proceedings of the First International Conference on Mathematical Modeling, Vol. IV (X. J. R. Avula, ed.), St. Louis, Missouri, pp. 2203–2211, 1977.

    Google Scholar 

  3. Zeleny, M., Linear Multiobjective Programming, Springer-Verlag, New York, 1974.

    Book  MATH  Google Scholar 

  4. Philip, J., Algorithms for the Vector Maximization Problem, Mathematical Programming, 2, 207–229, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  5. Mangasarian, O. L., Nonlinear Programming, McGraw-Hill, New York, 1969.

    MATH  Google Scholar 

  6. Kuhn, H. W., and Tucker, A. W., Nonlinear Programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, California, pp. 481–492, 1950.

    Google Scholar 

  7. Charnes, A., and Cooper, W. W., Management Models and Industrial Applications of Linear Programming, Volume I, Wiley, New York, 1969.

    Google Scholar 

  8. Evans, J. P., and Steuer, R. E., A Revised Simplex Method for Linear Multiple Objective Programs, Mathematical Programming, 5, 54–72, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dauer, J. P., Analysis of the Objective Space in Multiple Objective Linear Programming, Journal of Mathematical Analysis and Applications, 126, 579–593, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bod, P., Linear Optimization with Several Simultaneously Given Objective Functions (in Hungarian), Mathematical Institute of the Hungarian Academy of Sciences, Vol. 8, pp. 541–556, 1963.

    MathSciNet  Google Scholar 

  11. Gal, T., A General Method for Determining the Set of All Efficient Solutions to a Linear Vector Maximum Problem, European Journal of Operational Research, 1, 307–322, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ecker, J. G., and Kouada, I. A., Finding Efficient Points for Linear Multiple Objective Programs, Mathematical Programming, 8, 375–377, 1975.

    Article  MathSciNet  Google Scholar 

  13. Ecker, J. G., and Kouada, I. A., Finding All Efficient Extreme Points for Multiple Objective Linear Programs, Mathematical Programming, 14, 249–261, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  14. Isermann, H., The Enumeration of the Set of All Efficient Solutions for a Linear Multiple Objective Program, Operational Research Quarterly, 28, 711–725, 1977.

    Article  MATH  Google Scholar 

  15. Ecker, J. G., Hegner, N. S., and Kouada, I. A., Generating All Maximal Efficient Faces for Multiple Objective Linear Programs, Journal of Optimization Theory and Applications, 30, 353–381, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  16. Dauer, J. P., and Liu, Y. H., Solving Multiple Objective Linear Programs in Objective Space, European Journal of Operational Research, to appear.

    Google Scholar 

  17. Dauer, J. P., and Krueger, R. J., A Multiobjective Optimization Model for Water Resources Planning, Applied Mathematical Modelling, 4, 171–175, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  18. Dantzig, G. B., Linear Programming and Extensions, Princeton University Press, Princeton, New Jersey, 1963.

    MATH  Google Scholar 

  19. El-Abyad, A. M., Geometric Analysis of the Objective Space in Linear Multiple Objective Programming, University of Nebraska-Lincoln, Lincoln, Nebraska, Ph.D. thesis, 1986.

    Google Scholar 

  20. Dauer, J. P., An Equivalence Result for Solutions of Multiobjective Linear Programs, Computers and Operations Research, 7, 33–39, 1980.

    Article  Google Scholar 

  21. Cohon, J. L., and Marks, D. H., Multiobjective Screening Models and Water Resources Investment, Water Resources Research, 9, 208–220, 1973.

    Article  Google Scholar 

  22. Haimes, Y. Y., Wismer, D. A., and Lasdon, L. S., On Bicriterion Formulation of the Integrated System Identification and System Optimization, IEEE Transactions on Systems, Man and Cybernetics, SMC-1, 296–297, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  23. Dauer, J. P., and Stadler, W., A Survey of Vector Optimization in Infinite-Dimensional Spaces, Part II, Journal of Optimization Theory and Applications, 51, 205–241, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  24. Haimes, Y. Y., Multiobjective Analysis in the Maumee River Basin: a Case Study on Level-B Planning, Case Western Reserve University, Cleveland, Ohio, 1977.

    Google Scholar 

  25. Philip, J., An Algorithm for Combined Quadratic and Multiobjective Programming, Multiple Criteria Decision Making, Proceedings of a Conference, Jouyen-Josas, France, 1975 (H. Thiriez and S. Zionts, eds.), Springer Lecture Notes in Economics and Mathematical Systems, Vol. 130, pp. 35–52, 1976.

    Google Scholar 

  26. Duesing, E. C., Polyhedral Convex Sets and the Economic Analysis of Production, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, Ph.D. thesis, 1978.

    Google Scholar 

  27. Sebo, D., Multiple Objective Linear Programming in Objective Space, University of Nebraska-Lincoln, Lincoln, Nebraska, Ph.D. thesis, 1981.

    Google Scholar 

  28. Dauer, J. P., and El-Abyad, A.M., Algorithms for Constructing the Faces of a Finitely Generated Cone, University of Nebraska-Lincoln, Lincoln, Nebraska, Technical Report, 1986.

    Google Scholar 

  29. Gal, T., and Leberling, H., Redundant Objective Functions in Linear Vector Maximum Problems and Their Determination, European Journal of Operational Research, 1, 176–184, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  30. Wets, R. J. B., and Witzgall, C, Algorithms for Frames and Linearity Spaces of Cones, Journal of Research of the National Bureau of Standards, 71B, 1–7,1967.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dauer, J.P. (1988). Numerically Analyzing Linear Multicriteria Optimization Problems. In: Stadler, W. (eds) Multicriteria Optimization in Engineering and in the Sciences. Mathematical Concepts and Methods in Science and Engineering, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3734-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3734-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3736-0

  • Online ISBN: 978-1-4899-3734-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics