Advertisement

The Chemistry, Kinetics, and Mechanisms of Triplet Carbene Processes in Low-Temperature Glasses and Solids

  • Matthew S. Platz

Abstract

In the early 1960s, Closs and Hutchison at the University of Chicago(1) and Trozzolo and Wasserman(2) at Bell Laboratories demonstrated the utility of matrix isolation EPR spectroscopy in the study of triplet carbenes. Triplet carbenes are, of course, highly reactive intermediates formed upon photolysis of diazo compounds or diazirines. As such, they cannot be isolated and analyzed by conventional methods as can kinetically stable species. By photochemically preparing a carbene in a rigid matrix at low temperature, one hopes to impart a long lifetime (minutes to hours) to the species of interest, thereby enabling its characterization by EPR spectroscopy. These rigid matrices are easily prepared by simply freezing a solution of, for example, a diazo precursor in a suitable solvent to 77 K.

Keywords

Kinetic Isotope Effect Laser Flash Photolysis Diazo Compound Matrix Chemistry Insertion Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. L. Gloss, in: Carbenes (R. A. Moss and J. Jones, Jr., eds.), Vol. 2, Wiley, New York.Google Scholar
  2. 2.
    A. M. Trozzolo and E. Wasserman, in: Carbenes (R. A. Moss and M. Jones, Jr., eds.), Wiley, New York (1975), p. 185.Google Scholar
  3. 3. (a)
    C. A. Hutchison, Jr. and B. W. Mangum, J. Chem. Phys. 19, 952 (1958);CrossRefGoogle Scholar
  4. (b).
    A. Carrington and A. D. McLachlin, Introduction to Magnetic Resonance, Harper and Row, New York (1967).Google Scholar
  5. 4.
    S. I. Weissman, Acc. Chem. Res. 6, 233 (1973).CrossRefGoogle Scholar
  6. 5.
    S. I. Weissman, J. Chem. Phys. 19, 1189 (1958).CrossRefGoogle Scholar
  7. 6.
    W. J. Baron, M. R. DeCamp, M. E. Hendrick, M. Jones, Jr., R. H. Levin, and M. B. Sohn, Carbenes Vol. 1 Wiley, New York (1973).Google Scholar
  8. 7.
    W. Kirmse, Carbene Chemistry, Academic Press, New York (1971).Google Scholar
  9. 8. (a)
    G. M. J. Schmidt, Solid State Photochemistry, Verlag-Chemie, Weinheim, DDR (1976);Google Scholar
  10. (b).
    J. R. Scheffer, Acc. Chem. Res. 13, 283 (1980).CrossRefGoogle Scholar
  11. 9. (a)
    D. E. Doetschman and C. A. Hutchison, Jr., J. Chem. Phys. 56, 3964 (1972);CrossRefGoogle Scholar
  12. (b).
    J. M. McBride, Jr., Acc. Chem. Res. 16, 304 (1983).CrossRefGoogle Scholar
  13. 10.
    R. A. Moss and U.-H. Dolling, J. Am. Chem. Soc. 93, 954 (1971).CrossRefGoogle Scholar
  14. 11. (a)
    A. M. Trozzolo, R. W. Murray, and E. Wasserman, J. Am. Chem. Soc. 84, 4991 (1962);CrossRefGoogle Scholar
  15. (b).
    E. Wasserman, A. M. Trozzolo, W. A. Yager, and R. W. Murray, J. Am. Chem. Soc. 40, 2408 (1964);Google Scholar
  16. (c).
    L. Barash, E. Wasserman, and W. A. Yager, J. Am. Chem. Soc. 89, 3931 (1967)CrossRefGoogle Scholar
  17. (d).
    R. E. Moser, J. M. Fritsch, and C. N. Mathews, J. Chem. Soc. Chem. Commun. 1967, 770.Google Scholar
  18. 12.
    T. A. Baer and C. D. Gutsche, J. Am. Chem. Soc, 93, 5180 (1971).CrossRefGoogle Scholar
  19. 13.
    R. A. Moss and J. K. Huselton, J. Am. Chem. Soc 100, 1314 (1978).CrossRefGoogle Scholar
  20. 14.
    R. A. Moss and M. A. Joyce, J. Am. Chem. Soc 100, 4475 (1978).CrossRefGoogle Scholar
  21. 15.
    R. A. Moss and M. A. Joyce, J. Am. Chem. Soc. 99, 1262 (1977); see correction: J. Am. Chem. Soc. 99, 7399 (1977).CrossRefGoogle Scholar
  22. 16.
    H. Tomioka, Y. Ozaki, and Y. Izawa, Chem. Lett. 1982, 843.Google Scholar
  23. 17.
    H. Tomioka, Y. Ozaki, Y. Koyabu, and Y. Izawa, Tetrahedron Lett. 23, 1917 (1982).CrossRefGoogle Scholar
  24. 18.
    T. G. Savino, K. Kanakarajan, and M. S. Platz, J. Org. Chem. 51, 1305 (1986).CrossRefGoogle Scholar
  25. 19.
    P. S. Skell and M. S. Cholod, J. Am. Chem. Soc. 91, 713 (1969).Google Scholar
  26. 20. (a)
    K. N. Houk, N. G. Rondan, and J. Mareda, Tetrahedron 41, 1555 (1985);CrossRefGoogle Scholar
  27. (b).
    I. R. Gould, N. J. Turro, J. Butcher, Jr., C. Doubleday, Jr., N. P. Hacker, G. F. Lehr, R. A. Moss, D. P. Cox, W. Guo, R. C. Munjal, L. A. Perez, and M. Fedorynski, Tetrahedron 45, 1587 (1985).CrossRefGoogle Scholar
  28. 21.
    F. H. Westheimer, Chem. Rev. 61, 265 (1961).CrossRefGoogle Scholar
  29. 22.
    H. Tomioka, J. Am. Chem. Soc 101, 256 (1979).CrossRefGoogle Scholar
  30. 23. (a)
    R. L. Barcus, C. M. Hadel, L. J. Johnston, M. S. Platz, T. G. Savino, and J. C. Scaiano, J. Am. Chem. Soc. 108, 3928 (1986);CrossRefGoogle Scholar
  31. (b).
    L. M. Hadel, V. M. Maloney, M. S. Platz, W. F. McGimpsey, and J. C. Scaiano, J. Phys. Chem. 90, 2488 (1986);CrossRefGoogle Scholar
  32. (c).
    D. Griller, L. M. Hadel, A. S. Nazran, M. S. Platz, P. C. Wong, T. G. Savino, and J. C. Scaiano, J. Am. Chem. Soc. 106, 2227 (1984).CrossRefGoogle Scholar
  33. 24.
    H. Tomioka, M. Itoh, S. Yamakawa, and Y. Izawa, J. Am. Chem. Soc. Perkin Trans.2 1980, 603.CrossRefGoogle Scholar
  34. 25.
    R. S. Hutton and H. D. Roth, J. Am. Chem. Soc. 100, 4324 (1978).CrossRefGoogle Scholar
  35. 26.
    H. Tomioka, S. Suzuki, and Y. Izawa, Chem. Lett. 1980, 293.Google Scholar
  36. 27.
    H. D. Roth, Acc Chem. Res. 10, 85 (1977).CrossRefGoogle Scholar
  37. 28.
    H. Tomioka and Y. Izawa, J. Am. Chem. Soc. 99, 6128 (1977).CrossRefGoogle Scholar
  38. 29.
    H. Tomioka, T. Miwa, S. Suzuki, and Y. Izawa, Bull. Chem. Soc Jpn. 53, 753 (1980).CrossRefGoogle Scholar
  39. 30.
    H. Tomioka, S. Suzuki, and Y. Izawa, J. Am. Chem. Soc 104, 3156 (1982).CrossRefGoogle Scholar
  40. 31.
    S. Oikawa and M. Tsuda, J. Am. Chem. Soc. 107, 1940 (1985).CrossRefGoogle Scholar
  41. 32.
    L. B. Harding, H. B. Schlegel, R. Krishnan, and J. A. Pople, J. Phys. Chem.. 84, 3394 (1980)CrossRefGoogle Scholar
  42. 32a.
    see also J. Am. Chem. Soc. 105, 6389 (1983).Google Scholar
  43. 33.
    J. C. Scaiano and L. C. Stewart, J. Am. Chem. Soc. 105, 3609 (1983).CrossRefGoogle Scholar
  44. 34.
    R. L. Barcus, M. S. Platz, and J. C. Scaiano, J. Phys. Chem. 91, 695 (1987).CrossRefGoogle Scholar
  45. 35.
    C. P. Baskin, C. F. Bender, C. W. Bauschlicher, Jr., and H. F. Schaefer III, J. Am. Chem. Soc. 96, 2709 (1974).CrossRefGoogle Scholar
  46. 36.
    C. N. Bauschlicher, Jr. and H. F. Schaefer III, J. Am. Chem. Soc. 98, 3072 (1976).CrossRefGoogle Scholar
  47. 37.
    H. Tomioka, G. W. Griffin, and K. Nishiyama, J. Am. Chem. Soc 101, 6009 (1979).CrossRefGoogle Scholar
  48. 38.
    M. S. Platz, V. P. Senthilnathan, B. B. Wright, and C. W. McCurdy, Jr., J. Am. Chem. Soc 104, 6494 (1982).CrossRefGoogle Scholar
  49. 39.
    B. B. Wright and M. S. Platz, J. Am. Chem. Soc 106, 4175 (1984).CrossRefGoogle Scholar
  50. 40.
    See C. W. Bauschlicher, Jr. and I. Shavitt, J. Am. Chem. Soc. 100, 739 (1978).CrossRefGoogle Scholar
  51. 41.
    P. F. Zittel, G. B. Ellison, S. V. O’Neill, E. Herbst, C. W. Lineberger, and W. P. Reinhardt, J. Am. Chem. Soc. 98, 3731 (1976).CrossRefGoogle Scholar
  52. 42.
    C. A. Hutchison, Jr. and B. E. Kohler, J. Chem. Phys. 51, 3327 (1969).CrossRefGoogle Scholar
  53. 43.
    E. Levya, R. L. Barcus, and M. S. Platz, J. Am. Chem. Soc. 108, 7786 (1986).CrossRefGoogle Scholar
  54. 44.
    J. Zayas and M. S. Platz, J. Am. Chem. Soc. 107, 7065 (1985).CrossRefGoogle Scholar
  55. 45.
    J. M. McBride, Jr. and M. J. Tremelling, J. Org. Chem. 37, 1073 (1972).CrossRefGoogle Scholar
  56. 46.
    H. C. Chang, R. Popovitz-Biro, M. Lahav, and L. Leiserowitz, J. Am. Chem. Soc. 104, 614 (1982).CrossRefGoogle Scholar
  57. 47.
    H. Tomioka, T. Inagaki, and Y. Izawa, J. Chem. Soc. Chem. Commun. 1976, 1023.Google Scholar
  58. 48.
    H. Tomioka, T. Inagaki, S. Nakamura, and Y. Izawa, J. Chem. Soc., Perkin Trans. 1 1979, 130.CrossRefGoogle Scholar
  59. 49.
    H. Tomioka, H. Okuno, and Y. Izawa, J. Chem. Soc., Perkin Trans.2 1980, 1636.CrossRefGoogle Scholar
  60. 50.
    H. Tomioka, H. Okuno, and Y. Izawa, J. Org. Chem. 45, 5278 (1980).CrossRefGoogle Scholar
  61. 51.
    H. Tomioka, H. Okuno, and Y. Izawa, J. Org. Chem. 45, 5278 (1980)CrossRefGoogle Scholar
  62. 51a.
    H. Tomioka, S. Suzuki, and Y. Izawa, J. Am. Chem. Soc. 104, 1047 (1982).CrossRefGoogle Scholar
  63. 52.
    H. Tomioka, S. Suzuki, and Y. Izawa, Bull. Chem. Soc. Jpn. 55, 492 (1982).CrossRefGoogle Scholar
  64. 53. (a)
    H. Tomioka, N. Hayashi, Y. Izawa, V. P. Senthilnathan, and M. S. Platz, J. Am. Chem. Soc. 105, 5053 (1983);CrossRefGoogle Scholar
  65. (b).
    H. Tomioka, H. Ueda, S. Kondo, and Y. Izawa, J. Am. Chem. Soc. 102, 7817 (1980).CrossRefGoogle Scholar
  66. 54.
    E. C. Palik and M. S. Platz, J. Org. Chem. 48, 963 (1983).CrossRefGoogle Scholar
  67. 55.
    R. A. Moss and W. P. Wetter, Tetrahedron Lett. 22, 997 (1981).CrossRefGoogle Scholar
  68. 56.
    R. A. Barcus, E. C. Palik, and M. S. Platz, Tetrahedron Lett. 23, 1323 (1982).CrossRefGoogle Scholar
  69. 57.
    H. Tomioka, N. Hayashi, Y. Izawa, and M. T. H. Liu, Tetrahedron Lett. 25, 4413 (1984).CrossRefGoogle Scholar
  70. 58. (a)
    R. J. McMahon and O. L. Chapman, J. Am. Chem. Soc. 109, 683 (1987);CrossRefGoogle Scholar
  71. (b).
    O. L. Chapman, J. W. Johnson, R. J. McMahon, and P. R. West, J. Am. Chem. Soc. 110, 501 (1988).CrossRefGoogle Scholar
  72. 59.
    G. G. Vander Stouw, A. R. Kraska, and H. Shechter, J. Am. Chem. Soc. 94, 1655 (1972)CrossRefGoogle Scholar
  73. 59a.
    for reviews, see C. Wentrup, Top. Curr. Chem. 62, 173 (1976)CrossRefGoogle Scholar
  74. 59b.
    P. P. Gaspar, J.-P. Hsu, S. Chari, and M. J. Jones, Tetrahedron 41, 1479 (1985).CrossRefGoogle Scholar
  75. 60.
    M. Platz, J. Am. Chem. Soc. 101, 3398 (1979).CrossRefGoogle Scholar
  76. 61.
    C. T. Lin and P. P. Gaspar, Tetrahedron Lett. 21, 3553 (1980).CrossRefGoogle Scholar
  77. 62. (a)
    V. P. Senthilnathan and M. S. Platz, J. Am. Chem. Soc. 102, 7637 (1980);CrossRefGoogle Scholar
  78. (b).
    V. P. Senthilnathan and M. S. Platz, J. Am. Chem. Soc. 103, 5503 (1981);CrossRefGoogle Scholar
  79. (c).
    M. S. Platz, Acc. Chem. Res. 21, 236 (1988).CrossRefGoogle Scholar
  80. 63. (a)
    Z. V. Bol’Shakov and V. A. Tolkatchev, Chem. Phys. Lett. 40, 468 (1976);CrossRefGoogle Scholar
  81. (b).
    Z. V. Bol’Shakov, M. P. Fuks, V. A. Tolkatchev, and A. I. Burstein, Radiat. Chem. 4, 723 (1976);Google Scholar
  82. (c).
    R. L. Hudson, M. Shiotan, and F. Williams, Chem. Phys. Lett. 48, 193 (1977).CrossRefGoogle Scholar
  83. 64. (a)
    T. Doba, K. U. Ingold, W. Siebrand, and T. A. Wildman, Faraday Disc. Chem. Soc. 78, 175 (1984);CrossRefGoogle Scholar
  84. (b).
    T. Doba, K. U. Ingold, and W. Siebrand, Chem. Phys. Lett. 103, 339 (1983);CrossRefGoogle Scholar
  85. (c).
    T. Doba, K. U. Ingold, W. Siebrand, and T. A. Wildman, J. Phys. Chem. 88, 3163 (1984);CrossRefGoogle Scholar
  86. (d).
    T. Doba, K. U. Ingold, W. Siebrand, and T. A. Wildman, Chem. Phys. Lett. 115, 51 (1985)CrossRefGoogle Scholar
  87. (e).
    W. Siebrand and T. A. Wildman, Ace. Chem. Res. 19, 235 (1986).Google Scholar
  88. 65.
    J. M. Tedder, Tetrahedron 38, 313 (1982).CrossRefGoogle Scholar
  89. 66.
    J. Bigeleison, J. Phys. Chem. 56, 823 (1952).CrossRefGoogle Scholar
  90. 67.
    B. B. Wright, K. Kanakarajan, and M. S. Platz, J. Phys. Chem. 89, 3574 (1985).CrossRefGoogle Scholar
  91. 68.
    V. M. Maloney, Ph.D. thesis, The Ohio State University (1987).Google Scholar
  92. 69. (a)
    R. P. Bell, The Tunnel Effect in Chemistry, Chapman and Hall, New York (1980).CrossRefGoogle Scholar
  93. (b).
    E. F. Caldin, Chem. Rev. 69, 135 (1969).CrossRefGoogle Scholar
  94. 70.
    R. J. LeRoy, H. Murai, and F. Williams, J. Am. Chem. Soc. 102, 2325 (1980).CrossRefGoogle Scholar
  95. 71.
    T. G. Savino, N. Soundararajan, and M. S. Platz, J. Phys. Chem. 90, 919 (1986).CrossRefGoogle Scholar
  96. 72.
    R. L. Barcus, B. B. Wright, E. Leyva, and M. S. Platz, J. Phys. Chem. 91, 6677 (1987).CrossRefGoogle Scholar
  97. 73.
    E. Leyva, unpublished research at The Ohio State University.Google Scholar
  98. 74.
    J. A. Ruzicka, M. Sc. thesis, The Ohio State University (1985).Google Scholar
  99. 75.
    A. Grimison and G. A. Simpson, J. Phys. Chem. 72, 1776 (1968).CrossRefGoogle Scholar
  100. 76.
    T. G. Savino, V. P. Senthilnathan, and M. S. Platz, Tetrahedron 42, 2167 (1986).CrossRefGoogle Scholar
  101. 77. (a)
    I. Moritani, S. Murahashi, N. Nishino, K. Kimura, and H. Tsubomura, Tetrahedron Lett. 1966, 373;Google Scholar
  102. (b).
    I. Moritani, S. I. Murahashi, H. Ashitaka, K. Kimura, and H. Tsubomura, J. Am. Chem. Soc. 90, 5918 (1968).CrossRefGoogle Scholar
  103. 78.
    P. A. Gray, A. A. Herod, and A. Jones, Chem. Rev. 71, 257 (1971).Google Scholar
  104. 79.
    M. Shaffer, Ph.D. thesis, The Ohio State University (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Matthew S. Platz
    • 1
  1. 1.Department of ChemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations