Skip to main content

Phonon Spectra of Ultrathin GaAs/AlAs Superlattices

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 273))

Abstract

This paper presents some recent results of ab initio calculations of the dynamical properties of GaAs/AlAs superlattices (SL’s) grown along the (001) direction. In particular we will focus on open problems in the interpretation of the experimental thickness-dependence of the zone center longitudinal optical (LO) SL frequencies in the ultrathin (UT) regime, and clarify the origin of the major discrepancy between the measured Raman spectra and the previous theoretical predictions. This will allow us to draw conclusions on structural properties of such systems, and obtain indications on how LO modes can give useful information for characterization also in UT structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Baroni, P. Giannozzi, and E. Molinari, Phys. Rev. B41, 3870 (1990).

    Article  ADS  Google Scholar 

  2. For very recent reviews see: (a) B. Jusserand and M. Cardona, in “Light Scattering in Solids V”, edited by M. Cardona and G. Güntherodt, Springer, Berlin (1989), p. 49;

    Chapter  Google Scholar 

  3. J. Menéndez, J. of Luminescence 44, 285 (1989).

    Article  ADS  Google Scholar 

  4. A.S. Barker, Jr., L.J. Merz, and A.C. Gossard, Phys. Rev. B17, 3181 (1978).

    Article  ADS  Google Scholar 

  5. M. Nakayama, K. Kubota, and N. Sano, Solid State Commun. 53, 493 (1985).

    Article  ADS  Google Scholar 

  6. C. Colvard, T. A. Gant, M. V. Klein, R. Merlin, R. Fischer, H. Morkoç, and A. C. Gossard, Phys. Rev. B31. 2080 (1985).

    Article  ADS  Google Scholar 

  7. B. Jusserand, D. Paquet, and A. Regreny, Phys. Rev. B30, 6245 (1984).

    Article  ADS  Google Scholar 

  8. M. Cardona, T. Suemoto, N.E. Christensen, T. Isu, and K. Ploog, Phys. Rev. B36, 5906 (1987).

    Article  ADS  Google Scholar 

  9. A. Ishibashi, M. Itabashi, Y. Mri, K. Kawado, and N. Watanabe, Phys. Rev. B33. 2887 (1986).

    Article  ADS  Google Scholar 

  10. T. Toriyama, N. Kobayashi, and Y. Horikoshi, Jpn. J. Appl. Phys. 25, 1895 (1986).

    Article  ADS  Google Scholar 

  11. E. Molinari, A. Fasolino, and K. Kunc, in Troc. 18th Internat. Conf. on the Physics of Semiconductors”, edited by O. Engström, World Scientific, Singapore (1987), p. 663;

    Google Scholar 

  12. E. Molinari, A. Fasolino, and K. Kunc, Superlatt. Microstruct. 2, 397 (1986).

    Article  ADS  Google Scholar 

  13. K. Kunc and R.M. Martin, Phys. Rev. Lett. 48, 406 (1982)

    Article  ADS  Google Scholar 

  14. K. Kunc, in “Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter”, edited by J. T. Devreese and P.E. Van Camp, Plenum, New York (1985), p. 221.

    Google Scholar 

  15. E. Richter and D. Strauch, Solid State Commun. 64, 867 (1987).

    Article  ADS  Google Scholar 

  16. G. Kanellis, Phys. Rev. B35. 746 (1987).

    Article  ADS  Google Scholar 

  17. S.F. Ren, H. Chu, and Y.C. Chang, Phys. Rev. B37, 8899 (1988).

    Article  ADS  Google Scholar 

  18. T. Tsuchiya, H. Akera, and T. Ando, Phys. Rev. B39. 6025 (1989).

    Article  ADS  Google Scholar 

  19. K. Huang and B.F. Zhu, Phys. Rev. B38. 2183 (1988)

    Article  ADS  Google Scholar 

  20. F. Bechstedt and H. Gerecke, Phys. Stat. Sol. (b) 154, 565 (1989), and references therein.

    Article  ADS  Google Scholar 

  21. S. Baroni, P. Giannozzi, and E. Molinari, in “Proc. 19th Int. Conf. on the Physics of Semiconductors”, edited by W. Zawadzki, Inst, of Physics of the Polish Academy of Sciences, Warsaw (1988), p. 795

    Google Scholar 

  22. S. Baroni, P. Giannozzi, and E. Molinari, in “Proc. III Int. Conf. on Phontfn Physics and VI Int. Conf. on Phonon Scattering in Condensed Matter”, edited by S. Hunklinger, W. Ludwig, and G. Weiss, World Scientific, Singapore (1990), p. 722.

    Google Scholar 

  23. S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).

    Article  ADS  Google Scholar 

  24. G.B. Bachelet, D.R. Hamann, and M. Schlüter, Phys. Rev. B26, 4199 (1982).

    Article  ADS  Google Scholar 

  25. G. Dolling and J.L.T. Waugh, in “Lattice Dynamics”, Pergamon, London (1965), p. 19;

    Chapter  Google Scholar 

  26. D. Strauch and B. Dorner, J. of Phys.: Cond. Matt. 2, 1457 (1990);

    ADS  Google Scholar 

  27. A. Onton, in “Proc. 10th Int. Conf. Physics of Semiconductors”, USAEC, New York (1970), p. 107;

    Google Scholar 

  28. B. Monemar, Phys. Rev. B8, 5711 (1973).

    Article  ADS  Google Scholar 

  29. B. Dorner and D. Strauch, in “Proc. III Int. Conf. on Phonon Physics and VI Int. Conf. on Phonon Scattering in Condensed Matter”, edited by S. Hunklinger, W. Ludwig, and G. Weiss, World Scientific, Singapore (1990), p. 82.

    Google Scholar 

  30. P. Pavone, Master Thesis, SISSA, Trieste (1989), unpublished.

    Google Scholar 

  31. The origin of the slight discrepancies between the present results and Ref. 11 in the descriptio: of GaAs is probably related to their use of local pseudopotentials and supercells of limited size The description of AlAs in Ref. 10—which differs from the present one mainly in its larger L(bandwidth—was obtained using the GaAs force constants of Ref. 11 and adding a Couloni term to correct the LO-TO splitting; we point out that the discrepancy of the resulting AlA LO bandwidth10 with respect to the present one arises not only from the imperfections in th starting GaAs forces11, but also from the corrective long range term.

    Google Scholar 

  32. A. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, Phys. Rev. Lett. 54, 2111 (1985] Phys. Rev. Lett. 54, 2115 (1985).

    Article  ADS  Google Scholar 

  33. B. Jusserand and D. Paquet, Phys. Rev. Lett. 56, 1751 (1986).

    Article  ADS  Google Scholar 

  34. E. Molinari, S. Baroni, P. Giannozzi, and S. de Gironcoli, in “Proc. 20th Int. Conf. on th Physics of Semiconductors”, edited by E. Anastassakis and J.D. Joannopulos, World Scientific Singapore (1990), in press; and to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Molinari, E., Baroni, S., Giannozzi, P., de Gironcoli, S. (1991). Phonon Spectra of Ultrathin GaAs/AlAs Superlattices. In: Lockwood, D.J., Young, J.F. (eds) Light Scattering in Semiconductor Structures and Superlattices. NATO ASI Series, vol 273. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3695-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3695-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3697-4

  • Online ISBN: 978-1-4899-3695-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics