Advertisement

Interfacial Instabilities, Waves and Solitons Excited by the Marangoni Effect

  • M. G. Velarde
  • X.-L. Chu
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

For deep liquid layers we provide an extension of the Stokes- Boussinesq theory to describe (space and time modulated limit cycle) nonlinear capillary-gravity waves excited and sustained by the Marangoni effect, i.e. by the variation of surface tension with temperature or concentration of surface active material. The latter may appear as the result of chemical activity in the liquid or other processes including adsorption, etc. at the surface, coupled to the hydrodynamics in the bulk of the layer. On the other hand, in parallel with the preceding approach, for shallow liquid layers we provide an extension of the (nonlinear and dispersive) Korteweg-de Vries theory to describe the soliton excitation triggered by the same Marangoni effect and dissipation.

Keywords

Liquid Layer Capillary Number Open Surface Marangoni Number Marangoni Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lamb, H. (1932). Hydrodynamics. Dover: New York.MATHGoogle Scholar
  2. [2]
    Landau, L.D. & Lifshitz, E.M. (1959). Fluid Mechanics. Pergamon: Oxford.Google Scholar
  3. [3]
    Levich, B.G. (1962). Physicochemical Hydrodynamics. Prentice-Hall, Inc.: Englewood Cliffs, N.J.Google Scholar
  4. [4]
    Pearson, J.R. (1958). J. Fluid Mech. 4, 489.ADSCrossRefMATHGoogle Scholar
  5. [5]
    Sternling, C.V. & Scriven, L.E. (1959). AIChE Journal 5, 514.CrossRefGoogle Scholar
  6. [5a]
    See also Scriven, L.E. & Sternling, C.V. (1964). J. Fluid Mech. 19, 321.ADSCrossRefMathSciNetMATHGoogle Scholar
  7. [6]
    Velarde, M.G. & Normand, C. (1980). Sci. American 243, 78.CrossRefGoogle Scholar
  8. [7]
    Legros, J.C., Sanfeld, A. & Velarde, M.G. (1987). In Fluid Sciences and Materials Science in Space, Walter, H.U. (ed.), pp. 83–140. Springer-Verlag: New York.CrossRefGoogle Scholar
  9. [8]
    Velarde, M.G. (ed.) (1988). Physicochemical Hydrodynamics. Interfacial Phenomena. Plenum Press: New York.Google Scholar
  10. [9]
    Lucassen, J. (1968). J. Trans. Faraday Soc. 64, 2221, 2231.CrossRefGoogle Scholar
  11. [10]
    Lucassen-Reynders, E.H. & Lucassen, J. (1969). Adv. Colloid Interface Sci. 2, 347.CrossRefGoogle Scholar
  12. [11]
    Van den Tempel, M. & Lucassen-Reynders, E.H. (1983). Adv. Colloid Interface Sci. 18, 281.CrossRefGoogle Scholar
  13. [12]
    Hennenberg, M., Sörensen, T.S. & Sanfeld, A. (1977). J. Chem. Soc. Trans. Faraday II 73, 48.CrossRefGoogle Scholar
  14. [13]
    Hennenberg, M., Bisch, P.M., Vignes-Adler, M. & Sanfeld, A. (1978). In Dynamics and Instability of fluid Interfaces, Sørensen, T.S. (ed.), pp. 227–259. Springer-Verlag: Berlin.Google Scholar
  15. [14]
    Sanfeld, A., Steinchen, A., Hennenberg, M., Bisch, P.M., Van Lamsweerde-Gallez, D. & Dale-Vedove, W. (1978). In Dynamics and Instability of Fluid Interfaces, Sorensen, T.S. (ed.), pp. 168–204. Springer-Verlag: Berlin.Google Scholar
  16. [15]
    Sørensen, T.S., Hansen, F.Y, Nielsen, J. & Hennenberg, M. (1977). J. Chem. Soc. Trans. Faraday II 73, 1589.CrossRefGoogle Scholar
  17. [16]
    Sørensen, T.S., Hennenberg, M. & Hansen, F.Y. (1978). J. Chem. Soc. Trans. Faraday II 74, 1005.CrossRefGoogle Scholar
  18. [17]
    Sørensen, T.S. (1978). In Dynamics and Instability of Fluids Interfaces, Sørensen, T.S. (ed.), pp.1–74. Springer-Verlag: Berlin.Google Scholar
  19. [18]
    Linde, H. & Leschcke, K. (1966). Chem. Ing. Tech. (GDR) 39, 65.CrossRefGoogle Scholar
  20. [19]
    Linde, H. & Kunkel, E. (1969). Z. Warme-Stoffubertr. 2, 60.ADSCrossRefGoogle Scholar
  21. [20]
    Linde, H. & Schwartz, P. (1974). Chem. Tech. (GDR) 26, 455.Google Scholar
  22. [21]
    Linde, H. (1978). In Dynamics and Instability of Fluid Interfaces, Sørensen, T.S. (ed.), pp. 75–119. Springer- Verlag: Berlin.Google Scholar
  23. [22]
    Reinchenbach, J. & Linde, H. (1981). J. Colloid Interf. Sci. 84, 433.CrossRefGoogle Scholar
  24. [23]
    Linde, H. (1982). In Convective Transport and Instability Phenomena, Zierep, J. & Oertel, H. (eds.), pp. 256–296. Bruan-Verlag: Karlsruhe.Google Scholar
  25. [24]
    Garcia Ybarra, P. & Velarde, M.G. (1987). Phys. Fluids 30, 1649.ADSCrossRefMATHGoogle Scholar
  26. [25]
    Velarde, M.G., Garcia Ybarra, P. & Castillo, J. (1987). Physiochem. Hydrodyn. 9, 387.ADSGoogle Scholar
  27. [26]
    Velarde, M.G. & Chu, X.-L. (1989). Phys. Scripta T25, 231.CrossRefGoogle Scholar
  28. [27]
    Chu, X.-L. & Velarde, M.G. (1988). Physicochem. Hydrodyn. 10, 727.Google Scholar
  29. [28]
    Chu, X.-L. & Velarde, M.G. (1989). J. Colloid Interf. Sci. 131, 471.CrossRefGoogle Scholar
  30. [29]
    Velarde, M.G. & Chu, X.-L. (1988). Phys. Lett. A131, 403.MathSciNetGoogle Scholar
  31. [30]
    Velarde, M.G. & Chu, X.-L. (1989). II Nouvo Cimento D 11, 707.ADSGoogle Scholar
  32. [31]
    Chu, X.-L. & Velarde, M.G. (1989). II Nuovo Cimento D 11, 1615.CrossRefGoogle Scholar
  33. [32]
    Chu, X.-L. & Velarde, M.G. (1989). II Nuovo Cimento D 11, 1631.CrossRefGoogle Scholar
  34. [33]
    Chu, X.-L. & Velarde, M.G.(1989). Phys. Lett. A136, 126.CrossRefMathSciNetGoogle Scholar
  35. [34]
    Velarde, M.G. & Chu, X.-L. (1989). In Phase Transitions in Soft Condensed Matter, Riste, T. & Sherrington, D. (eds.), pp. 139–143. Plenum Press: New York.CrossRefGoogle Scholar
  36. [35]
    Chu, X.-L. & Velarde, M.G. (1989). Submitted to Europhys. Lett. Google Scholar
  37. [36]
    Velarde, M.G. & Chu, X.-L. Interfacial Instabilities. World Scientific: London, in preparation.Google Scholar
  38. [37]
    Vochten, R. & Petre, G. (1973). J. Colloid Interf. Sci. 42, 320.CrossRefGoogle Scholar
  39. [38]
    Motomura, K., Iwanage, S.-I., Hayami, Y., Uryu, S. & Matuura, K. (1981). J. Colloid Interface Sci. 80, 32.CrossRefGoogle Scholar
  40. [39]
    Desré, P.J. & Joud, J.C. (1981). Acta Astronaut. 8, 407.ADSCrossRefGoogle Scholar
  41. [40]
    Legros, J.C, Limbourg-Fontaine, M.C. & Petré, G. (1984). Acta Astronaut. 11, 143.ADSCrossRefGoogle Scholar
  42. [41]
    Lamb, G.L. (1980). Elements of Soliton Theory. John Wiley: New York.MATHGoogle Scholar
  43. [42]
    Whitham, G.B. (1974). Linear and Non-linear Waves. John Wiley: New York.Google Scholar
  44. [43]
    Drazin, P.G. & Johnson, R.S. (1989). Solitons: An Introduction. Cambridge Univ. Press: Cambridge.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. G. Velarde
    • 1
  • X.-L. Chu
    • 1
  1. 1.Facultad de CienciasU.N.E.D.MadridSpain

Personalised recommendations