A Study of the Autowave Mechanisms of Cardiac Arrhythmias

  • V. Krinsky
  • A. Pertsov
  • V. Fast
  • V. Biktashev
Part of the NATO ASI Series book series (NSSB, volume 244)


It has been shown by multielectrode electrophysiological mapping that many types of cardiac arrhythmias are based on re-entry, i.e. excitation wave circulation along a closed circuit. On the other hand, rotating waves of excitation have long been studied by physical methods. They constitute an important class of strongly nonlinear waves, the so-called autowave vortices.


Vortex Ischemia Cardiol Lidocaine Bromate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wiener, N. & Rosenbluth, A. (1946). The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardio. Hex. 16, 205–265.Google Scholar
  2. [2]
    Moe, G.K., Rheinboldt, W.C. & Abildskov, T.A. (1964). A computer model of atrial fibrillation. Am. Heart J. 67, 200.CrossRefGoogle Scholar
  3. [3]
    Krinsky, V.I. (1984). Autowaves: Results, Problems, Outlooks. In Self-Organization. Autowaves and Structures far from Equlibrium, Krinsky, V.I. (ed.), pp. 9–18. Springer-Verlag: Berlin.CrossRefGoogle Scholar
  4. [4]
    Krinsky, V.I. (1981). Mathematical models of cardiac arrhythmias. International Encyclopaedia of Pharmacology and Therapeutics, pp. 105–121. Pergamon Press: London.Google Scholar
  5. [5]
    Krinsky, V.I. (1968). Fibrillation in excitable media. Problemy Kibernetiki N 20: 59–80.Google Scholar
  6. [6]
    Agladze, K.I., Krinsky, V.I & Pertsov, A.M. (1984). Chaos in the non-stirred Belousov-Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures. Nature 308, 834–836.ADSCrossRefGoogle Scholar
  7. [7]
    Hramov, R.N., Rudenko, A.N., Panfilov, A.V. & Krinsky, V.I. (1984). Drift of vortices in heterogeneous active medium (simplified analysis). Studia Biophys. 102, 69–74.Google Scholar
  8. [8]
    Pertsov, A.M. & Ermakova, E.A. (1988). Mechanism of the drift of a spiral wave in an inhomogeneous medium. Biofizika 33, 338–342.MathSciNetGoogle Scholar
  9. [9]
    Fast, V.G. & Pertsov, A.M. (1989). Drift of vortices in myocardium. Biofizika, in press.Google Scholar
  10. [10]
    Pogwizd, S.M. & Corr, P.B. (1987). Reentrant and Nonreentrant Mechanisms Contribute to Arrhythmogenesis During Early Myocardial Ischemia: Results Using Three-Dimensional Mapping. Circ. Res. 61, 352–371.CrossRefGoogle Scholar
  11. [11]
    Panfilov, A.V. & Pertsov, A.M. (1984). A vortex ring in a three-dimensional active medium described by the reaction- diffusion equation. Doklady AN SSSR 274, 1500.Google Scholar
  12. [12]
    Winfree, A.T. & Strogatz, S.J. (1984). Organizing centres for three-dimensional chemical waves. Nature 311, 611–615.ADSCrossRefGoogle Scholar
  13. [13]
    Medvinsky, A.B., Panfilov, A.V. & Pertsov, A.M. (1984). Properties of Rotating Waves in Three Dimensions. Scroll Rings in Myocard. In Self-Organization. Autowaves and Structures far from Equilibrium, Krinsky, V.I. (ed.), pp. 195–199. Springer-Verlag: Berlin.CrossRefGoogle Scholar
  14. [14]
    Pertsov, A.M., Fast, V.G. & Grenader, A.K. (1986). Effects of lidocaine on “leading circle” and focal activity in isolated rabbit heart tissue under hypothermia. Kardiologia N4, 83–86.Google Scholar
  15. [15]
    Pertsov, A.M. & Fast, V.G. (1987). Threedimensional circulation during paroxysmal ventricular tachycardias: results of electrophysiologic mapping. Kardiologia N5, 75–78.Google Scholar
  16. [16]
    De Bakker, J.M.T., van Capelie, F.J.L., Janse, M.J., Wilde, A.A.M., Coronel, R., Becker, A.E., Dingenmans, K.P., van Hemel, N.M. & Hauer, R.N.W. (1988). Reentry as a cause of ventricular tachycardia in patients with chronic ischemia heart disease: electrophysiologic and anatomic correlation. Circulation 77, 589–606.CrossRefGoogle Scholar
  17. [17]
    Wit, A.L., Allessie, M.A., Bonke, F.I.M., Lammers, W., Smeets, J. & Fenoglio, J.J. (1982). Electrophysiological mapping to determine the mechanism of experimental ventricular tachycardia initiated by premature impulses. Am. J. Cardiol. 49, 166–185.CrossRefGoogle Scholar
  18. [18]
    Mines, G.R. (1914). On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans. R. Soc. Can. 8, 43–52.Google Scholar
  19. [19]
    Zipes, D.P., Fischer, J., King, R.M., Nicoll, A.D. & Jolly, W.W. (1975). Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am. J. Cardiol. 36, 37–44.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • V. Krinsky
    • 1
  • A. Pertsov
    • 1
  • V. Fast
    • 1
  • V. Biktashev
    • 2
  1. 1.Institute of Biological Physics, USSR Academy of SciencePushchino Moscow RegionUSSR
  2. 2.Research Computing Centre, USSR Academy of SciencePushchino Moscow RegionUSSR

Personalised recommendations