A Study of the Autowave Mechanisms of Cardiac Arrhythmias

  • V. Krinsky
  • A. Pertsov
  • V. Fast
  • V. Biktashev
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

It has been shown by multielectrode electrophysiological mapping that many types of cardiac arrhythmias are based on re-entry, i.e. excitation wave circulation along a closed circuit. On the other hand, rotating waves of excitation have long been studied by physical methods. They constitute an important class of strongly nonlinear waves, the so-called autowave vortices.

Keywords

Vortex Ischemia Cardiol Lidocaine Bromate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wiener, N. & Rosenbluth, A. (1946). The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardio. Hex. 16, 205–265.Google Scholar
  2. [2]
    Moe, G.K., Rheinboldt, W.C. & Abildskov, T.A. (1964). A computer model of atrial fibrillation. Am. Heart J. 67, 200.CrossRefGoogle Scholar
  3. [3]
    Krinsky, V.I. (1984). Autowaves: Results, Problems, Outlooks. In Self-Organization. Autowaves and Structures far from Equlibrium, Krinsky, V.I. (ed.), pp. 9–18. Springer-Verlag: Berlin.CrossRefGoogle Scholar
  4. [4]
    Krinsky, V.I. (1981). Mathematical models of cardiac arrhythmias. International Encyclopaedia of Pharmacology and Therapeutics, pp. 105–121. Pergamon Press: London.Google Scholar
  5. [5]
    Krinsky, V.I. (1968). Fibrillation in excitable media. Problemy Kibernetiki N 20: 59–80.Google Scholar
  6. [6]
    Agladze, K.I., Krinsky, V.I & Pertsov, A.M. (1984). Chaos in the non-stirred Belousov-Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures. Nature 308, 834–836.ADSCrossRefGoogle Scholar
  7. [7]
    Hramov, R.N., Rudenko, A.N., Panfilov, A.V. & Krinsky, V.I. (1984). Drift of vortices in heterogeneous active medium (simplified analysis). Studia Biophys. 102, 69–74.Google Scholar
  8. [8]
    Pertsov, A.M. & Ermakova, E.A. (1988). Mechanism of the drift of a spiral wave in an inhomogeneous medium. Biofizika 33, 338–342.MathSciNetGoogle Scholar
  9. [9]
    Fast, V.G. & Pertsov, A.M. (1989). Drift of vortices in myocardium. Biofizika, in press.Google Scholar
  10. [10]
    Pogwizd, S.M. & Corr, P.B. (1987). Reentrant and Nonreentrant Mechanisms Contribute to Arrhythmogenesis During Early Myocardial Ischemia: Results Using Three-Dimensional Mapping. Circ. Res. 61, 352–371.CrossRefGoogle Scholar
  11. [11]
    Panfilov, A.V. & Pertsov, A.M. (1984). A vortex ring in a three-dimensional active medium described by the reaction- diffusion equation. Doklady AN SSSR 274, 1500.Google Scholar
  12. [12]
    Winfree, A.T. & Strogatz, S.J. (1984). Organizing centres for three-dimensional chemical waves. Nature 311, 611–615.ADSCrossRefGoogle Scholar
  13. [13]
    Medvinsky, A.B., Panfilov, A.V. & Pertsov, A.M. (1984). Properties of Rotating Waves in Three Dimensions. Scroll Rings in Myocard. In Self-Organization. Autowaves and Structures far from Equilibrium, Krinsky, V.I. (ed.), pp. 195–199. Springer-Verlag: Berlin.CrossRefGoogle Scholar
  14. [14]
    Pertsov, A.M., Fast, V.G. & Grenader, A.K. (1986). Effects of lidocaine on “leading circle” and focal activity in isolated rabbit heart tissue under hypothermia. Kardiologia N4, 83–86.Google Scholar
  15. [15]
    Pertsov, A.M. & Fast, V.G. (1987). Threedimensional circulation during paroxysmal ventricular tachycardias: results of electrophysiologic mapping. Kardiologia N5, 75–78.Google Scholar
  16. [16]
    De Bakker, J.M.T., van Capelie, F.J.L., Janse, M.J., Wilde, A.A.M., Coronel, R., Becker, A.E., Dingenmans, K.P., van Hemel, N.M. & Hauer, R.N.W. (1988). Reentry as a cause of ventricular tachycardia in patients with chronic ischemia heart disease: electrophysiologic and anatomic correlation. Circulation 77, 589–606.CrossRefGoogle Scholar
  17. [17]
    Wit, A.L., Allessie, M.A., Bonke, F.I.M., Lammers, W., Smeets, J. & Fenoglio, J.J. (1982). Electrophysiological mapping to determine the mechanism of experimental ventricular tachycardia initiated by premature impulses. Am. J. Cardiol. 49, 166–185.CrossRefGoogle Scholar
  18. [18]
    Mines, G.R. (1914). On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans. R. Soc. Can. 8, 43–52.Google Scholar
  19. [19]
    Zipes, D.P., Fischer, J., King, R.M., Nicoll, A.D. & Jolly, W.W. (1975). Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am. J. Cardiol. 36, 37–44.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • V. Krinsky
    • 1
  • A. Pertsov
    • 1
  • V. Fast
    • 1
  • V. Biktashev
    • 2
  1. 1.Institute of Biological Physics, USSR Academy of SciencePushchino Moscow RegionUSSR
  2. 2.Research Computing Centre, USSR Academy of SciencePushchino Moscow RegionUSSR

Personalised recommendations