Advertisement

Travelling Wave Solutions of a Simple Nerve Conduction Equation for Inhomogeneous Axons

  • A. K. Schierwagen
Part of the NATO ASI Series book series (NSSB, volume 244)

Abstract

Helmholtz’s measurement of impulse conduction velocity in frog sciatic nerve which he accomplished in 1850 marked the beginning of the exact, quantitative description of excitation phenomena in nerves (Fig. 1). Currently, nerve impulse conduction represents one of the simplest, and because of this, most fully studied nonlinear wave phenomena in excitable media.

Keywords

Travel Wave Solution Excitable Medium Axon Diameter Impulse Conduction Impulse Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Babitsch, W.M. et al. (1972). Lineare Differential- gleichungen der mathematischen Physik. Akademie- Verlag: Berlin.Google Scholar
  2. [2]
    Bernstein, J.L. (1900). Lehrbuch der Physiologie. Verlag F. Enke: Stuttgart.Google Scholar
  3. [3]
    Dodge, F.A. & Cooley, J.W. (1973). Action potential of the motoneuron. IBM J. Res. Develop. 17, 219–229.CrossRefGoogle Scholar
  4. [4]
    FitzHugh, R. (1969). Mathematical models of excitation and propagation in nerve. In Biological Engineering, pp. 1–85, Schwan, H.P. (ed.). McGraw-Hill: New York.Google Scholar
  5. [5]
    FitzHugh, R. (1973). Dimensional analysis of nerve models. J. Theor. Biol. 40, 517–541.CrossRefGoogle Scholar
  6. [6]
    Goldman, L. & Albus, J.S. (1968). Computation of impulse conduction in myelinated fibres: theoretical basis of the velocity-diameter relation. Biophys. J. 8, 596–607.ADSCrossRefGoogle Scholar
  7. [7]
    Goldstein, S.S. & Rall, W. (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophys. J. 14, 731–757.CrossRefGoogle Scholar
  8. [8]
    Hodgkin, A.L. & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544.Google Scholar
  9. [9]
    Hunter, P.J., McNaughton, P.A. & Noble, D. (1975). Analytic models of propagation in excitable cells. Prog. Biophys. Violec. Biol. 30, 99–144.CrossRefGoogle Scholar
  10. [10]
    Kamke, E. (1967). Differentialgleichungen Bd. I. Geest & Portig: Leipzig.Google Scholar
  11. [11]
    Kelly, J.J. & Ghausi, M.S. (1965). Tapered distribution RC networks with similar immittances. IEEE Trans. Circuit Theory CT-12, 554–558.Google Scholar
  12. [12]
    Khodorov, B.I. & Timin, E.N. (1975). Nerve impulse propagation along non-uniform fibres (investigations using mathematical models). Prog. Biophys. Molec. Biol. 30, 145–184.CrossRefGoogle Scholar
  13. [13]
    Nagumo, J., Arimoto, S. & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070.CrossRefGoogle Scholar
  14. [14]
    Parnas, I., Hochstein, S. & Parnas, H. (1976). Theoretical analysis of parameters leading to frequency modulation along an inhomogeneous axon. J. Neurophysiol. 39, 909–922.Google Scholar
  15. [15]
    Pawelussen, J.P. (1980). Heteroclinic waves of the Fitzhugh-Nagumo equations. Amsterdam, preprint.Google Scholar
  16. [16]
    Rinzel, J. & Keller, J.B. (1973). Traveling wave solutions of a nerve conduction equation. Biophys. J. 13, 1313–1337.ADSCrossRefGoogle Scholar
  17. [17]
    Scott, A.C. (1975). The electrophysics of a nerve fiber. Rev. Mod. Phys. 47, 487–533.ADSCrossRefGoogle Scholar
  18. [18]
    Schierwagen, A.K. A non-uniform equivalent cable model of membrane voltage changes in a passive dendritic tree. J. Theor. Biol., in press.Google Scholar
  19. [19]
    Waxman, S.G. (ed.). Physiology and Pathobiology of Axons. Raven Press: New York.Google Scholar
  20. [20]
    Zykov, V.S. (1987). Simulation of Wave Processes in Excitable Media. Manchester University Press: Manchester.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. K. Schierwagen
    • 1
  1. 1.Sektion Informatik, FG NeuroinformatikKarl-Marx-Universität LeipzigLeipzigGermany

Personalised recommendations