Fundamental Aspects of Inert Gas Behaviour in Nuclear Fuels: Oxides, Carbides and Nitrides

  • Hj. Matzke
Part of the NATO ASI Series book series (NSSB, volume 279)


Fundamental aspects (lattice location, interaction with lattice defects, diffusion, precipitation into bubbles, radiation induced re-solution, thermal solubility, grain boundary bubbles, their venting etc.) of the behaviour of inert gases in ceramic compounds of uranium (oxides, carbides and nitrides) are discussed. Emphasis is placed on heavy rare gases (Kr, Xe) and on UO2 for which most data and theoretical calculations exist. Both fission and ion implantation are used to produce or incorporate the gases in the ceramics. The experimental techniques for studying inert gas behaviour include release measurements, electron microscopy, damage and lattice location studies by Rutherford-backscattering/channeling, electron microprobe analysis etc. The resultant picture is rather complete for UO2, but important gaps still remain for carbides and nitrides.


Boundary Bubble Volatile Fission Product Ceramic Nuclear Fuel Heterovalent Impurity Metal Atom Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hj. Matzke, Radiation Effects 53, 219 (1980).CrossRefGoogle Scholar
  2. 2.
    Hj. Matzke, Science and Technology of Advanced LMFBR Fuels, A Monograph on Solid State Physics. Chemistry and Technology of Carbides, Nitrides and Carbonitrides of Uranium and Plutonium, North Holland, Amsterdam, 740 pages.Google Scholar
  3. 3.
    Hj. Matzke, H. Blank, M. Coquerelle, I.L.F. Ray, C. Ronchi and C.T. Walker, J. Nucl. Mater. 166, 165 (1989).ADSCrossRefGoogle Scholar
  4. 4.
    K. Lassmann, C. Ronchi and G.J. Small, J. Nucl. Mater. 166, 112 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    R.A. Jackson and C.R.A. Caüow, J. Nucl. Mater. 127, 161 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    R.W. Grimes, this volume.Google Scholar
  7. 7.
    Hj. Matzke, Diffusion in Nonstoichiometric Oxides, Chapter 4 in Nonstoichiometric Oxides, Ed. O.T. Sorensen, Academic Press p. 155 (1981).CrossRefGoogle Scholar
  8. 8.
    Hj. Matzke, J. Chem. Soc., Faraday Transactions 86, 1243 (1990).CrossRefGoogle Scholar
  9. 9.
    I.L.F. Ray, H. Thiele and Hj. Matzke, this volume.Google Scholar
  10. 10.
    L.E. Thomas, this volume.Google Scholar
  11. 11.
    P. G. Lucuta, R.A. Verrall, Hj. Matzke and B.J. Palmer, J. Nucl. Mater., in print.Google Scholar
  12. 12.
    C. Ronchi, J. Appl. Phys. 44, 3575 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    H. Blank and Hj. Matzke, Radiation Effects 17, 57 (1973).CrossRefGoogle Scholar
  14. 14.
    Hj. Matzke, Nucl. Applications 2 131 (1966).Google Scholar
  15. 15.
    W. Miekeley and F. Felix, J. Nucl. Mater. 42, 297 (1972).ADSCrossRefGoogle Scholar
  16. 16.
    J. C. Carter, E.J. Driscoll and T.S. Elleman, Phys. Stat. Sol. A14, 673 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    Hj. Matzke and J.A. Davies, J. Appl. Phys. 38, 805 (1967).ADSCrossRefGoogle Scholar
  18. 18.
    Hj. Matzke and J.R. MacEwan, J. Nucl. Mater. 28, 316 (1968).ADSCrossRefGoogle Scholar
  19. 19.
    Hj. Matzke, J. Nucl. Mater. 21, 190 (1967).ADSCrossRefGoogle Scholar
  20. 20.
    R.L. Ritzmann, A.J. Markworth, W. Oldsfield and W. Chubb, Nucl. Applic. Technol. 12, 436 (1975).Google Scholar
  21. 21.
    H. Matsui, K. Sakanishi and T. Kirihara, J. Nucl. Sci. Technol. 9, 167 (1970).Google Scholar
  22. 22.
    Hj. Matzke and R. Thomas, 1962, cited in Hj. Matzke and R. Lindner, Atomkernenergie 9, 2 (1964) (in German) and Canadian Report NRC-TT 1329 (in English).Google Scholar
  23. 23.
    Hj. Matzke and F. Springer, Radiation Effects 2, 11 (1962).ADSCrossRefGoogle Scholar
  24. 24.
    Hj. Matzke, J. Nucl. Mater. 30, 110 (1969).ADSCrossRefGoogle Scholar
  25. 25.
    J.R. MacEwan and W.H. Stevens, J. Nucl. Mater. 11, 77 (1964).ADSCrossRefGoogle Scholar
  26. 26.
    T. Ogawa, R.A. Verrall, D.M. Schreiter and O.W. Westcott, Canada Report AECL-9475 (1987) p. 543.Google Scholar
  27. 27.
    K. Une, I. Tanabe and M. Oguma, J. Nucl. Mater. 150, 93 (1987).ADSCrossRefGoogle Scholar
  28. 28.
    Hj. Matzke, Radiation Effects 75, 317 (1983).CrossRefGoogle Scholar
  29. 29.
    J. H. Evans, this volume.Google Scholar
  30. 30.
    P. Bailey, S.E. Donnelly, D.G. Armour and Hj. Matzke, J. Nucl. Mater. 158, 19 (1988).ADSCrossRefGoogle Scholar
  31. 31.
    J.P. Biersack, in Ion Beam Modification of Insulators, eds. G. Arnold and P. Mazzoldi, Elsevier, Amsterdam (1987) p. 1.Google Scholar
  32. 32.
    A. Turos, S. Fritz and Hj. Matzke, Phys. Rev. B41, 3968 (1990).ADSCrossRefGoogle Scholar
  33. 33.
    Hj. Matzke, O. Meyer and A. Turos, Radiation Effects and Defects in Solids, in print.Google Scholar
  34. 34.
    C. Rossouw, S.E. Donnelly and Hj. Matzke, unpublished results.Google Scholar
  35. 35.
    Hj. Matzke and A. Turos, unpublished results.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Hj. Matzke
    • 1
  1. 1.Commission of the European Communities, Joint Research CentreEuropean Institute for Transuranium ElementsKarlsruheFederal Republic of Germany

Personalised recommendations