Overpressurized Inert Gas Clusters in Al and Si Observed by EXAFS Spectroscopy

  • G. Faraci
Part of the NATO ASI Series book series (NSSB, volume 279)


I present some recent experimental investigation on inert gas clusters, obtained by ion implantation of Al and Si. The use of the Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy has provided information on the structural and thermodynamical behaviour of the clusters: at room temperature, overpressurized crystalline Ar clusters are detected in the as-implanted samples, while Xe agglomerates are in the solid phase only after annealing. In both samples the evaluation of the Debye-Waller factor has provided an independent determination of the Debye temperature which has been found to be in excellent agreement with the value deduced from the overpressure using the nearest-neighbour distance.


Debye Temperature Recent Experimental Investigation Bulk Coordination Coordination Shell Distance Relative Coordination Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. vom Felde, J. Fink, Th Mueller-Heinzerling, J. Pflueger, B. Scheerer, G. Linker and D. Kaletta, Phys. Rev. Lett. 53, 922 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    C.J. Rossouw and S.E. Donnelly, Phys. Rev. Lett. 55, 2960 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    S.E. Donnelly and C.J. Rossouw, Nucl. Instrum. Methods Phys. Res. B13, 485 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    C. Templier, B. Boubeker, H. Garem, E.L. Math and J.C. Desoyer, Phys. Stat. Sol. A92, 511 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    C. Templier, H. Garem and J.P. Riviere, Phil. Mag. A53, 667 (1986).CrossRefGoogle Scholar
  6. 6.
    R.C. Butcher and W. Jaeger, J. Nucl. Mater. 135, 274 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    M. Wittmer, J. Roth and J.W. Mayer, J. Appl. Phys. 49, 5207 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    R. Revesz, M. Wittmer, J. Roth and J.W. Mayer, J. App. Phys. 49, 5199 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    A.G. Cullis, T. E. Seidel and R.L. Meek, J. Appl. Phys. 49, 5188 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    A. Luukkainen, J. Keinonen and M. Erola, Phys. Rev. B3, 4814 (1985).CrossRefGoogle Scholar
  11. 11.
    J.C. Desoyer, J. Delafond, C. Templier and H. Garem, Nucl. Instrum. Methods Phys. Res. B19/20, 450 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    H.G. Haubold, Radiat. Eff. 78, 385 (1983).CrossRefGoogle Scholar
  13. 13.
    G. Faraci, A.R Pennisi, A. Terrasi and S. Mobilio, Phys. Rev. B38, 13468 (1988).CrossRefGoogle Scholar
  14. 14.
    See for instance P.A. Lee, P.H. Citrin, P. Eisenberger and B. M. Kincaid, Rev. Mod. Phys. 53, 769 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    G. Faraci, S. La Rosa, A.R. Pennisi, S. Mobilio and G.Tourillon, in press. Phys Rev B.Google Scholar
  16. 16.
    W. Malzfeldt, W. Niemann, P. Rabe and R. Haensel in Proceedings of the Third International Conference on EXAFS and Near Edge Structure, eds K.O. Hodgson, B. Heaman and J.E. Penner-Hahn, Springer Proc. in Physics, Vol II (Springer, Berlin, 1984), p445.CrossRefGoogle Scholar
  17. 17.
    G. Beni and P.M. Platzman, Phys. Rev. B14, 1514 (1976).ADSCrossRefGoogle Scholar
  18. 18.
    A.C. Holt and M. Ross, Appl. Phys. Lett. 39, 894 (1981).Google Scholar
  19. 19.
    L.W Finger, R.M. Hazen, G. Zou, H.K. Mao and P.M. Bell, Appl. Phys. Lett. 39, 892 (1981).ADSCrossRefGoogle Scholar
  20. 20.
    A.N. Zisman, I.V. Aleksandrov and S.M. Stishov, Pis’ma Zh. Eksp. Teor. Fiz. 40, 253 (1984) [JETP Lett. 40, 6(1984)].Google Scholar
  21. 21.
    K. Asaumi, Phys. Rev. B29, 7026 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • G. Faraci
    • 1
  1. 1.Dipartimento di FisicaUniversita’ di CataniaCataniaItaly

Personalised recommendations