Advertisement

Fundamental and Applied Aspects of Noble Gas Bubbles in Steel

  • J. Noordhuis
  • J. Th. M. De Hosson
Part of the NATO ASI Series book series (NSSB, volume 279)

Abstract

This paper reports a study aimed at improving the wear performance of common steels by noble gas ion implantation and laser melting. It turns out that the shear stress field of a noble gas bubble in a metastable austenitic steel (SS 304) induces a martensitic transformation, provided that bubble size and pressure are large enough. The wear resistance decreases with increasing dose. In laser melted stable austenitic steel (RCC) subsequently implanted with noble gas ions, transmission electron micrographs has provided clear evidence of the formation of a large number of bubbles, Orowan looping and pinning of dislocations by these bubbles. The wear rate decreases with increasing dose. However, this is certainly not a general observation of laser melted-ion implanted steels. The low carbon steel CK22 for instance shows a martensitic structure after laser melting with a high dislocation density. In contrast to RCC, the wear rate increases with increasing dose suggesting that moving dislocations are interacting with forest dislocations rather than with the noble gas bubbles.

Keywords

Wear Rate Martensitic Transformation Orientation Relationship Bubble Size Thin Foil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.E.W. Hartley, in J.K. Hirvonen, Ed., Treatise on Materials Science and Technology, Vol. 18, Ion implantation, Academic Press, New York (1980).Google Scholar
  2. 2.
    L.J. Cuddy, H.E. Knechtel and W.C. Leslie, Metallurgical Transactions 5, 1999 (1974).CrossRefGoogle Scholar
  3. 3.
    H. De Beurs and J.Th.M. De Hosson, Applied Physics Letters 53, 663 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    R.G. Vardiman and I.L. Singer, Materials Letters 2, 150 (1983).CrossRefGoogle Scholar
  5. 5.
    I. Sakamoto, N. Hayahi, B. Furubayashi and H. Tanoue, Hyperfine Interactions 42, 1005 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    E. Johnson, E. Gerritsen, N.G. Chechenin, A. Johansen, L. Sarholt-Kristensen, H.A.A. Grabaek and J. Bohr, Nucl. Instr. and Meth. B39, 573 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    N. Hayashi and T. Takahashi, Applied Physics Letters 41, 1100 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    N.E.W. Hartley, J. Vac. Sci. Technol. 12, 485 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    E. Gerritsen, Thesis, Univ. of Groningen (1990).Google Scholar
  10. 10.
    E. Johnson, U. Littmark, Johansen and C. Christodoulides, Phil.Mag. A45, 803 (1982).CrossRefGoogle Scholar
  11. 11.
    E. Johnson, A. Johansen, L. Sarholt-Kristensen, L. Grabaek, N. Hayashi and I. Sakamoto, Nucl. Instr. and Meth. B19/20, 171 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    S. Kajiwara, Metall. Trans. A, 17A, 1693 (1986).CrossRefGoogle Scholar
  13. 13.
    J.R. Patel and M. Cohen, Acta Metall. 1, 531 (1953).CrossRefGoogle Scholar
  14. 14.
    J.C. Fisher and D. Turnbull, Acta Metall. 1, 310 (1953)CrossRefGoogle Scholar
  15. 15.
    K.E. Easterling and A.R. Tholen, Acta Metall. 24, 333 (1976).CrossRefGoogle Scholar
  16. 16.
    W.G. Wolfer, Phil. Mag. A59, 87 (1989).CrossRefGoogle Scholar
  17. 17.
    D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 257 (1981).Google Scholar
  18. 18.
    Y.J. Xu, B. van Brüssel, J. Noordhuis, P.M. Bronsveld and J.Th.M. De Hosson, Surface Engineering, Elsevier, 167 (1990).Google Scholar
  19. 19.
    J.H. Evans, Nucl. Instr. and Meth. B18, 16 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    P.J. Goodhew, Scripta Metall. 18, 1069 (1984).CrossRefGoogle Scholar
  21. 21.
    U.F. Kocks, Mat. Sci. Eng. 27, 291 (1977).Google Scholar
  22. 22.
    J.W. Martin, Micromechanisms in Particle-Hardened Alloys, Cambridge University Press (1980).Google Scholar
  23. 23.
    V. Gerhold and H. Haberkom, Phys. stat, sol. 16, 675 (1966).ADSCrossRefGoogle Scholar
  24. 24.
    A.J. Ardell, Met. Trans. A 16a, 2131 (1985).CrossRefGoogle Scholar
  25. 25.
    P.M. Kelly, Int. Met Rev. 18, 31 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. Noordhuis
    • 1
  • J. Th. M. De Hosson
    • 1
  1. 1.Department of Applied Physics, Materials Science CentreUniversity of GroningenAG GroningenThe Netherlands

Personalised recommendations