Skip to main content

Fundamental and Applied Aspects of Noble Gas Bubbles in Steel

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 279))

Abstract

This paper reports a study aimed at improving the wear performance of common steels by noble gas ion implantation and laser melting. It turns out that the shear stress field of a noble gas bubble in a metastable austenitic steel (SS 304) induces a martensitic transformation, provided that bubble size and pressure are large enough. The wear resistance decreases with increasing dose. In laser melted stable austenitic steel (RCC) subsequently implanted with noble gas ions, transmission electron micrographs has provided clear evidence of the formation of a large number of bubbles, Orowan looping and pinning of dislocations by these bubbles. The wear rate decreases with increasing dose. However, this is certainly not a general observation of laser melted-ion implanted steels. The low carbon steel CK22 for instance shows a martensitic structure after laser melting with a high dislocation density. In contrast to RCC, the wear rate increases with increasing dose suggesting that moving dislocations are interacting with forest dislocations rather than with the noble gas bubbles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.E.W. Hartley, in J.K. Hirvonen, Ed., Treatise on Materials Science and Technology, Vol. 18, Ion implantation, Academic Press, New York (1980).

    Google Scholar 

  2. L.J. Cuddy, H.E. Knechtel and W.C. Leslie, Metallurgical Transactions 5, 1999 (1974).

    Article  Google Scholar 

  3. H. De Beurs and J.Th.M. De Hosson, Applied Physics Letters 53, 663 (1988).

    Article  ADS  Google Scholar 

  4. R.G. Vardiman and I.L. Singer, Materials Letters 2, 150 (1983).

    Article  Google Scholar 

  5. I. Sakamoto, N. Hayahi, B. Furubayashi and H. Tanoue, Hyperfine Interactions 42, 1005 (1988).

    Article  ADS  Google Scholar 

  6. E. Johnson, E. Gerritsen, N.G. Chechenin, A. Johansen, L. Sarholt-Kristensen, H.A.A. Grabaek and J. Bohr, Nucl. Instr. and Meth. B39, 573 (1989).

    Article  ADS  Google Scholar 

  7. N. Hayashi and T. Takahashi, Applied Physics Letters 41, 1100 (1982).

    Article  ADS  Google Scholar 

  8. N.E.W. Hartley, J. Vac. Sci. Technol. 12, 485 (1975).

    Article  ADS  Google Scholar 

  9. E. Gerritsen, Thesis, Univ. of Groningen (1990).

    Google Scholar 

  10. E. Johnson, U. Littmark, Johansen and C. Christodoulides, Phil.Mag. A45, 803 (1982).

    Article  Google Scholar 

  11. E. Johnson, A. Johansen, L. Sarholt-Kristensen, L. Grabaek, N. Hayashi and I. Sakamoto, Nucl. Instr. and Meth. B19/20, 171 (1987).

    Article  ADS  Google Scholar 

  12. S. Kajiwara, Metall. Trans. A, 17A, 1693 (1986).

    Article  Google Scholar 

  13. J.R. Patel and M. Cohen, Acta Metall. 1, 531 (1953).

    Article  Google Scholar 

  14. J.C. Fisher and D. Turnbull, Acta Metall. 1, 310 (1953)

    Article  Google Scholar 

  15. K.E. Easterling and A.R. Tholen, Acta Metall. 24, 333 (1976).

    Article  Google Scholar 

  16. W.G. Wolfer, Phil. Mag. A59, 87 (1989).

    Article  Google Scholar 

  17. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 257 (1981).

    Google Scholar 

  18. Y.J. Xu, B. van Brüssel, J. Noordhuis, P.M. Bronsveld and J.Th.M. De Hosson, Surface Engineering, Elsevier, 167 (1990).

    Google Scholar 

  19. J.H. Evans, Nucl. Instr. and Meth. B18, 16 (1986).

    Article  ADS  Google Scholar 

  20. P.J. Goodhew, Scripta Metall. 18, 1069 (1984).

    Article  Google Scholar 

  21. U.F. Kocks, Mat. Sci. Eng. 27, 291 (1977).

    Google Scholar 

  22. J.W. Martin, Micromechanisms in Particle-Hardened Alloys, Cambridge University Press (1980).

    Google Scholar 

  23. V. Gerhold and H. Haberkom, Phys. stat, sol. 16, 675 (1966).

    Article  ADS  Google Scholar 

  24. A.J. Ardell, Met. Trans. A 16a, 2131 (1985).

    Article  Google Scholar 

  25. P.M. Kelly, Int. Met Rev. 18, 31 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Noordhuis, J., De Hosson, J.T.M. (1991). Fundamental and Applied Aspects of Noble Gas Bubbles in Steel. In: Donnelly, S.E., Evans, J.H. (eds) Fundamental Aspects of Inert Gases in Solids. NATO ASI Series, vol 279. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3680-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3680-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3682-0

  • Online ISBN: 978-1-4899-3680-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics