Proton NMR Spectroscopy of Coals, Cokes, and Coal-Derived Liquids

  • B. C. Gerstein
  • M. Pruski
  • Dieter Michel
Part of the Modern Analytical Chemistry book series (MOAC)


Although classical chemical methods and some modern techniques (e.g., high performance liquid chromatography, thermogravimetry, mass spectroscopy) have proved very useful in characterizing liquid products and extracts of coals, no determination of the chemical and physical structure of parent coals and solid products of coal processing was usually possible by employing those methods. This has stimulated the development of other, nondestructive spectroscopic techniques suitable for analyzing whole coals as well as solid (and liquid) products of fossil fuel processing. Nuclear magnetic resonance (NMR) has been one of the most powerful resonance spectroscopies for identifying both microscopic and, in the case of imaging, macroscopic regions of matter.(1–5) It is with pulse and Fourier transform techniques in 1H NMR(6) that the present chapter will deal. The reasons NMR has been traditionally such a powerful tool are easy to understand. First, and quite importantly, for spin-1/2 nuclei such as are protons, the NMR signal may generally be used for quantitative analysis. This statement is critical because hydrogen is the most sensitive nucleus commonly detected by NMR, but one of the least sensitive when analyzed by chemical methods such as combustion analyses of hydrocarbons. This statement is especially true for ill-characterized, heterogeneous hydrocarbons such as coals and pitches.


Brown Coal Nuclear Magnetic Resonance Spectroscopy Solid Fossil Fuel Single Pulse Excitation North Dakota Lignite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. D. Becker, High Resolution NMR-Theory and Chemical Applications, 2nd ed., Academic Press, New York, 1980.Google Scholar
  2. 2.
    C. P. Slichter, Principles of Magnetic Resonance, 2nd ed., Springer-Verlag, Heidelberg, 1978.CrossRefGoogle Scholar
  3. 3.
    M. Mehring, High Resolution NMR is Solids, Springer-Verlag, Heidelberg, 1981.Google Scholar
  4. 4.
    B. C. Gerstein and C. R. Dybowski, Transcient Techniques in NMR of Solids; An Introduction to the Theory and Practice, Academic Press, New York, 1985 and references cited therein.Google Scholar
  5. 5.
    B. C. Gerstein, Nuclear magnetic resonance, in: Encyclopedia of Physical Science and Technology, Vol. 9, Academic Press, New York, 1987.Google Scholar
  6. 6.
    T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR, Academic Press, New York, 1971.Google Scholar
  7. 7.
    P. J. Chu, R. P. Ziebarth, J. D. Corbett, and B. C. Gerstein, J. Am. Chem. Soc. 110 (1988) 5324.CrossRefGoogle Scholar
  8. 8.
    B. C. Gerstein, Philos. Trans. R. Soc. London, Ser. A 299 (1981) 521.CrossRefGoogle Scholar
  9. 9.
    B. C. Gerstein, in: Analytical Methods for Coal and Coal Products, III, Chap. 51, Academic Press, New York, 1979.Google Scholar
  10. 10.
    B. C. Gerstein, P. DuBois Murphy, and L. M. Ryan, in: Coal Structure (R. A. Meyers, ed.), Chap. 4, Academic Press, New York, 1982.Google Scholar
  11. 11.
    R. M. Davidson, Nuclear Magnetic Resonance Studies of Coal, Report No. ICTIS/TR32, IEA Coal Research, London, 1986.Google Scholar
  12. 12.
    K. W. Zilm and G. G. Webb, Fuel 67 (1988) 707.CrossRefGoogle Scholar
  13. 13.
    D. C. Champeney, Fourier Transforms and Their Physical Applications, Academic Press, New York, 1973.Google Scholar
  14. 14.
    D. E. Bernai and I. J. Lowe, Phys. Rev. Lett. 11 (1963) 258.CrossRefGoogle Scholar
  15. 15.
    B. C. Gerstein, Alternating Current Circuit Theory and Pulsed NMR, Iowa State University Report IS 4924, UC-13, June 1987.Google Scholar
  16. 16.
    D. J. Adduci, P. A. Hornung, and D. R. Torgeson, Rev. Sci. Instrum. 47 (1976) 1503.CrossRefGoogle Scholar
  17. 17.
    N. Boden, M. Gibb, Y. K. Levine and M. Mortimer, J. Magn. Reson. 16 (1974) 471.Google Scholar
  18. 18.
    The details of these results are presently being assembled for submission as separate publications.Google Scholar
  19. 19.
    R. A. Wind, M. J. Duijvestijn, C. van der Lugt, J. Smidt, and H. Vriend, Fuel 66 (1987) 877.CrossRefGoogle Scholar
  20. 20.
    R. A. Wind, A. Jurkiewicz, and G. E. Maciel, Fuel 68 (1989) 1189.CrossRefGoogle Scholar
  21. 21.
    M. S. Solum, R. J. Pugmire, and D. M. Grant, Energy and Fuels 3 (1989) 187.CrossRefGoogle Scholar
  22. 22.
    C. L. Glaves, P. J. Davis, D. P. Gallegos, and D. M. Smith, Energy and Fuels 2 (1988) 662.CrossRefGoogle Scholar
  23. 23.
    L. J. Lnch and D. S. Webster, J. Magn. Reson. 40 (1980) 259.Google Scholar
  24. 24.
    J. F. Unsworth, C. S. Fowler, N. A. Heard, V. L. Weldon, and V. J. McBrierty, Fuel 67 (1988) 1111.CrossRefGoogle Scholar
  25. 25.
    B. Kamienski, M. Pruski, and B. C. Gerstein, Energy and Fuels 1 (1987) 45.CrossRefGoogle Scholar
  26. 26.
    L. J. Lynch, R. Sakurovs, D. S. Webster, and P. R. Redlich, Fuel 67 (1988) 1036.CrossRefGoogle Scholar
  27. 27.
    T. J. Parks, L. J. Lynch, and D. S. Webster, Fuel 66 (1987) 338.CrossRefGoogle Scholar
  28. 28.
    S. F. Dec, C. E. Bronniman, R. A. Wind, and G. E. Maciel, J. Magn. Reson. 82 (1989) 454.Google Scholar
  29. 29.
    H. Rosenberger, G. Scheler, and E. Kunstner, Fuel 67 (1988) 509.CrossRefGoogle Scholar
  30. 30.
    A. Jurkiewicz, C. E. Bronniman, and G. E. Maciel, Fuel 68 (1989) 873.CrossRefGoogle Scholar
  31. 31.
    J. M. Dereppe and C. Moreaux, Fuel 64 (1985) 1174.CrossRefGoogle Scholar
  32. 32.
    R. Gerhards, Erdöl. Kohle 36 (1983) 316.Google Scholar
  33. 33.
    C. E. Snape, Fuel 61 (1982) 775.CrossRefGoogle Scholar
  34. 34.
    C. E. Snape, Fuel 62 (1983) 621.CrossRefGoogle Scholar
  35. 35.
    D. J. Cookson and B. E. Smith, Fuel 62 (1983) 39.CrossRefGoogle Scholar
  36. 36.
    F. Abu-Dagga and H. Rüegger, Fuel 67 (1988) 1255.CrossRefGoogle Scholar
  37. 37.
    P. L. Gupta, P. V. Dogra, R. K. Kuchhal, and P. Kumar, Fuel 65 (1986) 515.CrossRefGoogle Scholar
  38. 38.
    J.-J. Delpuech, D. Nicole, M. Le Roux, P. Ciche, and S. Pregermain, Fuel 65 (1986) 1600.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • B. C. Gerstein
    • 1
  • M. Pruski
    • 1
  • Dieter Michel
    • 2
  1. 1.Department of Chemistry and Ames LaboratoryIowa State UniversityAmesUSA
  2. 2.Sektion PhysikKarl-Marx-UniversitätLeipzigGermany

Personalised recommendations