On-Line Fourier Transform Infrared Spectroscopy in Coal Research

  • Peter R. Solomon
Part of the Modern Analytical Chemistry book series (MOAC)

Abstract

Infrared spectroscopy has traditionally been an important tool for the study of coal conversion chemistry, since most organic and mineral components absorb in the IR. Early applications to coal employing dispersive IR spectrometers were discussed by Lowry,(1) van Krevelen,(2) Friedel,(3) Brown,(4) Brooks et al., (5) Friedel and Retcofsky,(6) and references cited therein.

Keywords

Combustion Furnace Sulfide Attenuation Petroleum 

Particle Optical and Other Properties

εv

Emittance

Fva

Absorption efficiency (= εv), defined as the absorption cross-section divided by the geometric cross-section

Fvt

Total efficiency (extinction), for scattering out of the angular acceptance aperture of our instrument plus absorption

Fvs

Scattering efficiency, for scattering out of the angular acceptance aperture of our instrument

Fvs’

Scattering efficiency, for scattering wall radiation into the acceptance aperture of our instrument

N

Particle number density

A

Geometrical crosssectional area

αvg

Absorption coefficient for gases

αvs

Absorption coefficient for soot

IV, I0v

Detected intensity

τv

Transmittance ( =I V/I 0v)

Rv

Sample radiance

Rvn

Normalized radiance [=R v/ (1-τ)]

Rvb(T)

Blackbody radiance W v: Instrument response function

Sv

Observed emission spectra from sample (corrected for background)

v

Wavenumber

L

Optical pathlength through the sample stream

T

Temperature

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. H. Lowry, Chemistry of Coal Utilization, Suppl. Volume, Wiley, New York, 1963.Google Scholar
  2. 2.
    D. W. van Krevelen, Coal, Elsevier, Amsterdam, 1961.Google Scholar
  3. 3.
    R. A. Friedel, in: Applied Infrared Spectroscopy (D. N. Kendall, ed.), p. 312, Reinhold, New York, 1966.Google Scholar
  4. 4.
    J. K. Brown, J. Chem. Soc. (1955) 744.Google Scholar
  5. 5.
    J. D. Brooks, R. A. Durie, and S. Sternhell, Aust. J. Appl Sci.9 (1958) 63.Google Scholar
  6. 6.
    R. A. Friedel and H. Retcofsky, Proceedings of the Fifth Carbon Conference, Vol. II, p. 149, Pergamon Press, New York, 1963.CrossRefGoogle Scholar
  7. 7.
    P. R. Solomon, D. G. Hamblen, and R. M. Carangelo, Applications of Fourier transform infrared spectroscopy in fuel science, in: ACS Symp. Ser. 205 (1982) 77.CrossRefGoogle Scholar
  8. 8.
    P. R. Solomon and R. M. Carangelo, Fuel 61 (1982) 663.CrossRefGoogle Scholar
  9. 9.
    D. W. Kuehn, R. W. Synder, A. Davis, and P. C. Painter, Fuel 61 (1982) 682.CrossRefGoogle Scholar
  10. 10.
    P. C. Painter, M. Starsinic, E. Squires, and A. Davis, Fuel 62 (1983) 742.CrossRefGoogle Scholar
  11. 11.
    M. Sobkowiak, E. Riesser, R. Given, and P. Painter, Fuel 63 (1983) 1245.CrossRefGoogle Scholar
  12. 12.
    B. Riesser, M. Starsinic, E. Squires, A. Davis, and P. C. Painter, Fuel 63 (1984) 1253.CrossRefGoogle Scholar
  13. 13.
    P. C. Painter, R. W. Snyder, M. Starsinic, M. M. Coleman, D. W. Kuehn, and A. Davis, Appl. Spectrosc. 35 (1981) 475.CrossRefGoogle Scholar
  14. 14.
    P. C. Painter, M. Starsinic, and M. M. Coleman, in: Fourier Transform Infrared Spectroscopy (J. R. Ferraro and L. J. Balise, eds.), Chap. 5, Academic Press, New York, 1985.Google Scholar
  15. 15.
    P. R. Solomon and R. M. Carangelo, Fuel 67 (1988) 949.CrossRefGoogle Scholar
  16. 16.
    R. M. Carangelo, P. R. Solomon, and D. G. Gerson, Fuel 66 (1987) 960.CrossRefGoogle Scholar
  17. 17.
    J. K. Whelan, P. R. Solomon, G. V. Deshpande, and R. M. Carangelo, Energy and Fuels2 (1988) 65.CrossRefGoogle Scholar
  18. 18.
    P. E. Best, R. M. Carangelo, J. R. Markham, and P. R. Solomon, Combust. Flame 66 (1986) 47.CrossRefGoogle Scholar
  19. 19.
    P. R. Solomon, R. M. Carangelo, D. G. Hamblen, and P. E. Best, Appl. Spectrosc. 40 (1986) 746.CrossRefGoogle Scholar
  20. 20.
    P. R. Solomon, R. M. Carangelo, P. E. Best, J. R. Markham, and D. G. Hamblen, Twenty-First Symposium (International) on Combustion, p. 437, The Combustion Institute, Pittsburgh, PA, 1986.Google Scholar
  21. 21.
    P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, P. L. Chien, R. J. Santoro, and H. G. Semerjian, Twenty-First Symposium (International) on Combustion, p. 1763, The Combustion Institute, Pittsburgh, PA, 1987.Google Scholar
  22. 22.
    P. R. Solomon, R. M. Carangelo, P. E. Best, J. R. Markham, and D. G. Hamblen, Fuel 66 (1987) 897.CrossRefGoogle Scholar
  23. 23.
    P. R. Solomon, R. M. Carangelo, P. E. Best, J. R. Markham, D. G. Hamblen, and P. L. Chien, In-situ FT-IR emission/transmission diagnostics in combustion, in: Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion (J. Lahaye and G. Prado, eds.), p. 347, Martinus Nijhoff, The Hague, 1987.CrossRefGoogle Scholar
  24. 24.
    P. R. Solomon, P. L. Chien, R. M. Carangelo, P. E. Best, and J. R. Markham, Application of FT-IR E/T spectroscopy to study coal combustion phenomena, presented at the International Coal Combustion Symposium, Beijing, China, Sept. 1987.Google Scholar
  25. 25.
    P. R. Solomon, M. A. Serio, R. M. Carangelo, and J. R. Markham, Fuel 65 (1986) 182.CrossRefGoogle Scholar
  26. 26.
    M. A. Serio, D. G. Hamblen, J. R. Markham, and P. R. Solomon, Energy and Fuels 1 (1987) 138.CrossRefGoogle Scholar
  27. 27.
    P. R. Solomon, P. L. Chien, R. M. Carangelo, P. E. Best, and J. R. Markham, Twenty-Second Symposium (International) on Combustion, p. 211, The Combustion Institute, Pittsburgh, PA, 1988.Google Scholar
  28. 28.
    P. L. Chien, P. E. Best, R. M. Carangelo, and P. R. Solomon, Tomographic reconstruction of Fourier transform infrared (FT-IR) spectra at points within a coannular flame, poster session, Twenty-Second Symposium (International) on Combustion, Seattle, Washington, D.C., Aug. 1988.Google Scholar
  29. 29.
    P. E. Best, P. L. Chien, R. M. Carangelo, and P. R. Solomon, Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: Species concentrations and temperatures, Combust. Flame 85 (1991) 309.CrossRefGoogle Scholar
  30. 30.
    P. R. Solomon, R. M. Carangelo, D. Gravel, M. Baillargeon, F. Baudais, and G. Vail, Characterization of Petroleum Feedstocks by TG-FTIR, ACS Division of Petroleum Chemistry, Los Angeles, CA, 1988.Google Scholar
  31. 31.
    P. R. Solomon, M. A. Serio, R. M. Carangelo, R. Bassilakis, D. Gravel, M. Baillargeon, F. Baudais, and G. Vail, Energy and Fuel 4(3) (1990) 319.CrossRefGoogle Scholar
  32. 32.
    P. R. Solomon, P. E. Best, P. L. Chien, and R. M. Goodman, A laboratory combustion facility for evaluation of CWF, Sixth International Workshop on Coal-Liquid and Alternate Fuels Technology, Halifax, Canada, 1986.Google Scholar
  33. 33.
    R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, Section 20–5, McGraw-Hill, New York, 1972.Google Scholar
  34. 34.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.Google Scholar
  35. 35.
    P. R. Solomon, D. G. Hamblen, R. M. Carangelo, M. A. Serio, and G. V. Deshpande, Energy and Fuels 2 (1988) 405.CrossRefGoogle Scholar
  36. 36.
    P. R. Solomon, D. G. Hamblen, R. M. Carangelo, M. A. Serio, and G. V. Desphande, Combust. Flame 71 (1988) 137.CrossRefGoogle Scholar
  37. 37.
    P. R. Solomon, P. E. Best, Z. Z. Yu, and G. V. Deshpande, A Macromolecular Network Model for Coal Fluidity, ACS Division of Fuel Chemistry, Miami, FL, Sept. 1989.Google Scholar
  38. 38.
    M. A. Serio, P. R. Solomon, Z. Z. Yu, and R. Bassilakis, The Effect of Rank on Coal Pyrolysis Kinetics, ACS Division of Fuel Chemistry, Miami, FL, Sept. 1989.CrossRefGoogle Scholar
  39. 39.
    P. R. Solomon, M. A. Serio, and J. R. Markham, Kinetics of coal pyrolysis, presented at the International Conference on Coal Science, Japan, Oct. 1989.Google Scholar
  40. 40.
    K. S. Vorres, Am. Chem. Soc, Div. Fuel Chem., Prepr. 32 (1987) 221; also User’s Handbook for the Argonne Premium Coal Sample Program, Supported by U.S. DOE Contract No. W-31–109-ENG-238, 1989.Google Scholar
  41. 41.
    P. R. Solomon, M. A. Serio, and S. G. Heninger, Am. Chem. Soc, Div. Fuel Chem., Prepr. 31 (1986) 200.Google Scholar
  42. 42.
    P. E. Best, P. R. Solomon, M. A. Serio, E. M. Suuberg, W. R. Mott, Jr., and R. Bassilakis, Am. Chem. Soc, Div. Fuel Chem., Prepr. 32 (1987) 138.Google Scholar
  43. 43.
    This technique was developed by John McClelland of Ames Laboratory and the spectra were supplied by him.Google Scholar
  44. 44.
    G. Laufer, J. T. Huneke, B. S. H. Royce, and Y. C. Teng, Appl. Phys. Lett. 37 (1980) 517.CrossRefGoogle Scholar
  45. 45.
    T. H. Fletcher, Time-resolved particle temperature measurements and mass loss measurements of a bituminous coal during devolatilization, Combust. Flame 78 (1989) 223.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Peter R. Solomon
    • 1
  1. 1.Advanced Fuel Research, Inc.East HartfordUSA

Personalised recommendations