Advertisement

Cloning and Characterisation of a Mosquito Acetylcholinesterase Gene

  • Colin A. Malcolm
  • Lucinda M. C. Hall

Abstract

Acetylcholinesterase (AChE, EC 3.1.1.7), a serine hydrolase, catalyzes the breakdown of the neurotransmitter acetylcholine into acetate and choline. This involves the formation of a substrate enzyme complex, followed by acetylation of the hydroxyl group of the amino acid serine, present within the esteratic site, and finally deacetylation. AChE is the target site for carbamate and organophosphate (OP) insecticides. These compounds react in an analogous way to acetylcholine, forming a complex, then respectively carbamylating or phosphorylating the enzyme. The dephosphorylating and decarbamylating steps are however very slow thus inhibiting the enzyme. (O’Brian 1976).

Keywords

Insecticide Resistance Polytene Chromosome Salivary Gland Chromosome Larval Salivary Gland EMBO Journal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berge, J.B. and Fournier, D. 1988. Advances in molecular genetics of acetylcholinesterase insensitivity in insecticide resistant insects. Proc. XVIII Int. Cong. Entomol. Vancouver, B.C. Canada, p 461.Google Scholar
  2. Bingham, P.M., Lewis, R. and Rubin, G.M. 1981. Cloning of DNA sequences from the white locus of Drosophila melanogaster by a novel and general method. Cell 25: 693–704.PubMedCrossRefGoogle Scholar
  3. Bonning, B.C. 1989. “Acetylcholinesterase and insecticide resistance in mosquitoes.” Ph.D. Thesis, University of London.Google Scholar
  4. Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nuc. Acids Res. 16: 10881–10890.CrossRefGoogle Scholar
  5. Fournier, D. and Berge, J.B. 1990. Resistance to insecticide: Detection of a mutation in the acetylcholinesterase gene from Drosophila melanogaster. pp in: “Molecular Insect Science.” Hagedorn, H.H., Hildebrand, J.G., Kidwell, M.G. and Law, J.H., eds. Pergamon Press.Google Scholar
  6. Fournier, D., Bride, J.M., Karch, F., Berge, J.B. 1988b. Acetylcholinesterase from Drosophila melanogaster: identification of two subunits encoded by the same gene. FEBS Lett. 238: 333–337.PubMedCrossRefGoogle Scholar
  7. Fournier, D., Karch, F., Bride, J.M., Hall, L.M.C., Berge, J.B. and Spierer P. 1989. The Drosophila melanogaster acetylcholinesterase gene: structure, evolution and mutations. J.Mol. Biol. 210: 15–22.PubMedCrossRefGoogle Scholar
  8. ffrench-Constant, R.H. and Bonning, B.C. 1989. Rapid microtitre plate test distinguishes insecticide resistant acetylcholinesterase genotypes in the mosquitoes Anopheles albimanus, An. nigerrimus and Culex pipiens. Med. Vet. Entomol. 3: 9–16.PubMedCrossRefGoogle Scholar
  9. Gnagey, A.L., Forte, M. and Rosenberry, T.L. 1987. Isolation and characterisation of acetylcholinesterase from Drosophila. J.Biol.Chem. 262: 13290–13298.PubMedGoogle Scholar
  10. Hall, L.M.C. and Spierer, P. 1986. The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5′ leader. EMBO Journal. 5: 2949–2954.PubMedGoogle Scholar
  11. Hunt, R.H. 1987. Location of genes on chromosome arms in the Anopheles gambiae group of species and their correlation to linkage data for anopheline mosquitoes. Med.Vet. Entomol. 1: 81p–88.PubMedCrossRefGoogle Scholar
  12. Kaiser, K. and Murray, N. 1985. The use of phage lambda replacement vectors in the construction of representative genomic DNA libraries. pp. 1–47 in: “DNA Cloning.” Vol I. Glover, D.M. ed. IRL Press, Oxford.Google Scholar
  13. Kaiser, P.E., Seawright, J.A. and Joslyn, D.J. 1979. Cytology of a genetic sexing system in Anopheles albimanus Wiedmann. Can. J. Genet. Cytol. 21: 201–211.Google Scholar
  14. Kieffer, B., Goeldner, M., Hirth, C., Aebersold, R. and Chang, J.Y. 1986. Sequence determination of a peptide fragment from electric eel acetylcholinesterase involved in the binding of quaternary ammonium. FEBS Lett. 202: 91–96.CrossRefGoogle Scholar
  15. Lockridge, O., Bartels, C.F., Vaughan, T.A., Wong, C.K., Norton, S.E. and Johnson, L.L. 1987. Complete amino acid sequence of human serum Cholinesterase. J.Biol.Chem. 262: 549–557.PubMedGoogle Scholar
  16. Malcolm, C.A. and Mali, P. 1986. Genetic sexing of Anopheles stephensi with the larval morphological mutant Bl. Genetica 70: 37–42.CrossRefGoogle Scholar
  17. Maniatis, T., Fritsch, E.F., Sambrook, J. 1982. “Molecular Cloning. A Laboratory Manual.” Cold Spring Harbor Laboratory, New York.Google Scholar
  18. Massoulie, J. and Bon, S. 1982. The molecular forms of Cholinesterase and acetyl — Cholinesterase in vertebrates. Annu. Rev. Neurosci. 5: 57–106.PubMedCrossRefGoogle Scholar
  19. Morton, R.A. and Singh, R.S. 1982. The association between malathion resistance and acetylcholinesterase in Drosophila melanogaster. Biochem. Genet. 20: 179–198.PubMedCrossRefGoogle Scholar
  20. O’Brian, R.D. 1976. Acetylcholinesterase and its inhibition, pp. 271–296 in: “Insecticide biochemistry and physiology” Wilkinson, CF., ed., Heyden Press.Google Scholar
  21. Oppenoorth, F.J. 1985. Biochemistry and genetics of insecticide resistance, pp. 735–745 in: “Comprehensive Insect Physiology, Biochemistry and Pharmacology.” vol 12. G.A. Kerkut and L.I. Gilbert, eds. Pergamon Press, Oxford.Google Scholar
  22. Pardue, M.L. 1986. In situ hybridisation to DNA of chromosomes and nuclei. pp. 111–137 in: “Drosophila a Practical Approach.” Roberts, D.B. ed. IRL Press Oxford.Google Scholar
  23. Prody, C.A., Zevin-Sonkin, D., Gnatt, A., Goldberg, O. and Soreq, H. 1987. Isolation and characterisation of full length cDNA clones coding for Cholinesterase from fetal human tissues. Proc. Natl. Acad. Sci. USA 84: 3555–3559.PubMedCrossRefGoogle Scholar
  24. Redfern, C.F. 1981. Homologous banding patterns in the polytene chromosomes from larval salivary glands and ovarian nurse cells of Anopheles stephensi. Chromosoma (Berl.) 83: 221–240.CrossRefGoogle Scholar
  25. Schumacher, M., Camp, S., Maulet, Y., Newton, M., Macphee-Quigley, K., Taylor, S.S., Friedmann, T. and Taylor, P. 1986. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature 319: 407–409.PubMedCrossRefGoogle Scholar
  26. Sharma, G.P., Parshad, R., Narang, S.L. and Kitzmiller, J.B. 1969. The salivary chromosomes of Anopheles stephensi. J. Med. Ent. 6: 68–71.Google Scholar
  27. Sikorav, J.L., Krejci, E. and Massoulie, J. 1987. cDNA sequences of Torpedo marmorata acetylcholinesterase: primary structure of the precursor of a catalytic subunit; existance of multiple 5′-untranslated regions. EMBO Journal 6: 1865–1873.PubMedGoogle Scholar
  28. Sikorav, J.L., Duval, N., Anselmet, A., Bon, S., Krejci, E., Legay, C., Osterlund, M., Reimund, B. and Massoulie, J. 1988. Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipid-anchored dimeric form. EMBO Journal 7: 2983–2993.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Colin A. Malcolm
    • 1
  • Lucinda M. C. Hall
    • 2
  1. 1.School of Biological Sciences, Queen Mary and Westfield CollegeUniversity of LondonLondonUK
  2. 2.Department of Medical Microbiology, The London Hospital Medical CollegeThe University of LondonLondonUK

Personalised recommendations