Advertisement

Biochemistry and Molecular Biology of Insect Cytochrome P450

  • R. Feyereisen
  • J. F. Koener
  • F. A. Cariño
  • A. S. Daggett

Abstract

Cytochrome P450 monooxygenases (P450) are a diverse and ubiquitous group of enzymes encoded by genes from a superfamily comprising at least 17 families, and probably many more (Nebert and Gonzalez, 1987; Nebert et al., 1989). Our present understanding of P450 enzymes comes mainly from studies of P450 in vertebrates, where they are involved in steroid biosynthesis and in the metabolism of drugs and chemical carcinogens, and in bacteria, with P450 cam from Pseudomonas putida being the only P450 enzyme for which a crystal structure is presently available (Poulos et al., 1987).

Keywords

P450 Protein Insecticide Resistance P450 Reductase Musca Domestica Cytochrome P450 Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agosin, M. 1985. Role of microsomal oxidations in insecticide degradation, pp 647–712 in: “Comprehensive Insect Physiology, Biochemistry and Pharmacology.” Vol.12. Kerkut, G. A. and Gilbert, L. I., eds. Pergamon Press, Oxford.Google Scholar
  2. Agosin, M, Michaeli, D., Miskus, R., Nagasawa, S. and Hoskins, W. 1961. A new DDT- metabolizing enzyme in the german cockroach. J. Econ. Ent. 54: 340–342.Google Scholar
  3. Arias, R. O. and Terriere, L. C. 1962. The hydroxylation of naphthalene-C14 by housefly microsomes. J. Econ. Ent. 55: 925–929.Google Scholar
  4. Baldridge, G. D. and Feyereisen, R. 1986. Blood meal and cytochrome P-450. Pest. Biochem. Physiol. 25: 407–413.CrossRefGoogle Scholar
  5. Bonet, R. G., Crampton, J. and Townson, H. 1989. Mosquito P-450 genes and pyrethroid insecticide resistance. pp in “Molecular Insect Science.” Hagedorn, H. H., Hildebrand, J. G., Kidwell, M.G. and Law, J. H., eds. Plenum, New York..Google Scholar
  6. Brattsten, L. B. 1979. Ecological significance of mixed-function oxidations. Drug Metab. Rev. 10: 35–58.PubMedCrossRefGoogle Scholar
  7. Brattsten, L. B. and Ahmad, S. 1986. “Molecular aspects of insect-plant interactions.” Plenum Press, New York.Google Scholar
  8. Burger, A. 1987. In vitro studies on potential selective and irreversible inhibitors of enzymes involved in the biosynthesis of ecdysone. Pest. Biochem. Physiol. 29: 197–208.CrossRefGoogle Scholar
  9. Fenwick, M. L. 1958. The production of an esterase inhibitor from schradan in the fat body of the desert locust. Biochem. J. 70: 373–381.PubMedGoogle Scholar
  10. Feyereisen, R. 1987. Chemical disruption of insect juvenile hormone biosynthesis, pp 113–116 in: “Pesticide Science and Biotechnology.” Greenhalgh, R and Roberts, T. R. eds. Blackwell Scientific Publications, Oxford.Google Scholar
  11. Feyereisen, R. and Vincent, D. R. 1984. Characterization of antibodies to house fly NADPH-cytochrome P-450 reductase. Insect Biochem. 14: 163–168.CrossRefGoogle Scholar
  12. Feyereisen, R., Koener, J. F., Farnsworth, D. E., and Nebert, D. W. 1989. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica. Proc. Natl. Acad. Sci. USA 86: 1465–1469.PubMedCrossRefGoogle Scholar
  13. Field, L. M., Devonshire, A. L., Hrench-Constant, R.H., and Forde, B. G. 1989. The combined use of immunoassay and a DNA diagnostic technique to identify insecticid- resistant genotypes in the peach-potato aphid, Myzus persicae. Pest. Biochem. Physiol. 34: 174–178.CrossRefGoogle Scholar
  14. Furuya, H., Shimizu, T., Hirano, K., Hatano, M., Fuji-Kuriyama, Y., Raag, R., and Poulos, T. L. 1989. Site-directed mutageneses of rat liver cytochrome P-450d: Catalytic activities toward benzphetamine and 7-ethoxycoumarin. Biochem. 28: 6848–6857.CrossRefGoogle Scholar
  15. Halliday, W. R., Farnsworth, D. E. and Feyereisen, R. 1986. Hemolymph ecdysteroid titer and midgut 20-monooxygenase activity during the last larval stage of Diploptera punctata. Insect Biochem. 16: 627–634.CrossRefGoogle Scholar
  16. Hodgson, E. 1985. Microsomal mono-oxygenases. pp 225–321 in: “Comprehensive Insect Physiology, Biochemistry and Pharmacology.” Vol 11. Kerkut, G. A. and Gilbert, L. I., eds. Pergamon Press, Oxford.Google Scholar
  17. Imai, Y. and Nakamura, M. 1989. Point mutations at threonine-301 modify substrate specificity of rabbit liver microsomal cytochromes P-450. Biochem. Biophys. Res. Comm. 158: 717–722.PubMedCrossRefGoogle Scholar
  18. Konno, T., Hodgson, E. and Dauterman, W. C. 1989. Studies on methyl parathion resistance in Heliothis virescens. Pest. Biochem. Physiol. 33: 189–199.CrossRefGoogle Scholar
  19. Krieger, R. I., Feeny, P. P., and Wilkinson, C. F. 1971. Detoxification enzymes in the guts of caterpillars: An evolutionary answer to plant defenses? Science 172: 579–581.PubMedCrossRefGoogle Scholar
  20. Ladonni, H. and Townson, H. 1989. Genetics of P-450 mediated pyrethroid resistance in the mosquito Anopheles stephensi. pp in: “Molecular Insect Science.” Hagedorn, H. H., Hildebrand J. G., Kidwell, M. G., and Law, J. H., eds. Plenum, New York.Google Scholar
  21. Lindberg, R. L. P. and Negishi, M. 1989. Alterations of mouse cytochrome P450coh substrate specificity by mutation of single amino-acid residue. Nature 339: 632–634.PubMedCrossRefGoogle Scholar
  22. Nebert, D. W. and Gonzalez, F. J. 1987. Structure, evolution and regulation. Ann. Rev. Biochem. 56: 945–993.PubMedCrossRefGoogle Scholar
  23. Nebert, D. W., Nelson, D. R., and Feyereisen, R. 1989. Evolution of the cytochrome P450 genes. Xenobiotica 19: 1149–1160.PubMedCrossRefGoogle Scholar
  24. Nelson, D. R. and Strobel, H. W. 1988. On the membrane topology of vertebrate cytochrome P-450 proteins. J. Biol. Chem. 263: 6038–6050.PubMedGoogle Scholar
  25. Nisimoto, Y. 1986. Localization of cytochrome c-binding domain on NADPH-cytochrome P-450 reductase. J. Biol. Chem. 261: 14232–14239.PubMedGoogle Scholar
  26. Ortiz de Montellano, P. R. 1986. Cytochrome P-450, structure, mechanism and biochemistry,.125 pp in: : “Cytochrome P-450.” Plenum Press, New York.CrossRefGoogle Scholar
  27. Ostrowski, J., Barber, M. J., Rueger, D. C., Miller, B. E., Siegel, L. M., and Kredich, N. M. 1989. Characterization of the flavoprotein moieties of NADPH-Sulfite reductase from Saklmonella typhimurium and Escherichia coli. J. Biol. Chem. 264: 15796–15808.PubMedGoogle Scholar
  28. Plapp, F. W. Jr. 1984. The genetic basis of insecticide resistance in the house fly: Evidence that a single locus plays a major role in metabolic resistance to insecticides. Pest. Biochem. Physiol. 22: 194–201.CrossRefGoogle Scholar
  29. Porter, T. D. and Kasper, C. B. 1985. Coding nucleotide sequence of rat NADPH- cytochrome P-450 oxidoreductase cDNA and identification of flavin-binding domains. Proc. Natl. Acad. Sci. USA 82: 973–977.PubMedCrossRefGoogle Scholar
  30. Porter, T. D. and Kasper, C. B. 1986. NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Bioch. 25: 1682–1687.CrossRefGoogle Scholar
  31. Poulos, T. L., Finzel, B. C., and Howard, A. J. 1987. High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol. 195: 687–700.PubMedCrossRefGoogle Scholar
  32. Ray, J. W. 1965. Pest Infestation Research, p.59, HMSO, London.Google Scholar
  33. Ronis, M. J. J., Hodgson, E., and Dauterman, W. C. 1988. Characterization of multiple forms of cytochrome P-450 from an insecticide resistant strain of house fly (Musca domestica). Pest. Biochem. Physiol. 32: 74–90.CrossRefGoogle Scholar
  34. Rose, H. A. 1985. The relationship between feeding specialization and host plants to aldrin epoxidase activities of midgut homogenates in larval lepidoptera. Ecol. Entomol. 10: 455–467.CrossRefGoogle Scholar
  35. Ruettinger, R. T., Wen, L. P., and Fulco, A. J. 1989. Coding nucleotide, 5′ regulatory, and deduced amino acid sequences of P450bm-3, a single peptide cytochrome P-450: NADPH-P-450 reductase from Bacillus megaterium. J. Biol. Chem. 264: 10987–10995.PubMedGoogle Scholar
  36. Shayiq, R. M. and Avadhani, N. G. 1989. Purification and characterization of a hepatic mitochondrial cytochrome P-450 active in aflatoxin B1 metabolism. Biochem. 28: 7546–7554.CrossRefGoogle Scholar
  37. Shen, A. L., Porter, T. D., Wilson, T. E., and Kasper, C. B. 1989. Structural analysis of the FMN binding domain of NADPH-cytochrome P-450 oxidoreductase by site-directed mutagenesis. J. Biol. Chem. 264: 7584–7589.PubMedGoogle Scholar
  38. Shimizu, T., Hirano, K., Takahashi, M., Hatano, M., and Fuji-Kuriyama, Y. 1988. Site-directed mutageneses of rat liver cytochrome P-450d: axial ligand and heme incorporation. Biochem. 27: 4138–4141.CrossRefGoogle Scholar
  39. Shimizu, T., Sadeque, A. J. M., Hatano, M, and Fuji-Kuriyama, Y. 1989. Bindings of axial ligands to cytochrome P-450d mutants: a difference absorption spectral study. Biochem. Biophys. Acta 995: 116–121.PubMedCrossRefGoogle Scholar
  40. Stayton, P. S., Poulos, T. L., and Sligar, S. G. 1989. Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam association. Biochem. 28: 8201–8205.CrossRefGoogle Scholar
  41. Tsubaki, M., Iwamoto, Y., Hiwatashi, A., and Ichikawa, Y. 1989. Inhibition of electron transfer from adrenodoxin to cytochrome P-450scc by chemical modification with pyridoxal 5′-phosphate: identification of adrenodoxin-binding site of cytochrome P-450scc. Biochem. 28: 6899–6907.CrossRefGoogle Scholar
  42. Waters, L. C. and Nix, C. E. 1988. Regulation of insecticide resistance-related cytochrome P-450 expression in Drosophila melanogaster. Pest. Biochem. Physiol. 30: 214–227.CrossRefGoogle Scholar
  43. Wheelock, G. D. and Scott, J. G. 1989. Purification and initial characterization of the major cytochrome P-450 from a pyrethroid resistant house fly. pp in: “Molecular Insect Science.” Hagedorn, H. H., Hildebrand, J. G., Kidwell, M. G. and Law, J. H., ed. Plenum, New York.Google Scholar
  44. White, R. A., Franklin, R. T., and Agosin, M. 1979. Conversion of α-pinene to α-pinene oxide by rat liver and the bark beetle Dendroctonus terebrans microsomal fractions. Pest. Biochem. Physiol. 10: 233–242.CrossRefGoogle Scholar
  45. Yu, S. J. 1988. Microsomal S-demethylase activity in four lepidopterous insects. Pest. Biochem. Physiol. 31: 182–186.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • R. Feyereisen
    • 1
  • J. F. Koener
    • 1
  • F. A. Cariño
    • 1
  • A. S. Daggett
    • 1
  1. 1.Department of EntomologyOregon State UniversityCorvallisUSA

Personalised recommendations