Homeotic Genes of the Red Flour Beetle, Tribolium castaneum

  • R. W. Beeman
  • S. J. Brown
  • J. J. Stuart
  • R. E. Denell


The powerful combination of genetic, developmental and molecular methodologies available for Drosophila melanogaster has made it the premier insect experimental system for studies in many areas. Although there is no doubt that D. melanogaster should continue to be the first choice for investigations of many fundamental phenomena, there is also a strong rationale in many contexts for a comparative approach utilizing other insect systems. For example, D. melanogaster is highly specialized with respect to the events of segmentation and many aspects of anterior development.


Abdominal Segment Homeotic Gene Drosophila Embryo Tribolium Castaneum Germ Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, M. K. and Kaufman, T. C. 1986. The relationship between the functional complexity and the molecular organization of the Antennapedia locus of Drosophila melanogaster. Genetics 114: 919–942.PubMedGoogle Scholar
  2. Akam, M. 1987. The molecular basis for metameric pattern in the Drosophila embryo. Development. 101: 1–22.PubMedGoogle Scholar
  3. Akam, I., Dawson, I., and Tear, G. 1988. Homeotic genes and the control of segment diversity. Development 104 (suppl.): 123–133.Google Scholar
  4. Beeman, R. W. 1987. A homoeotic gene cluster in the red flour beetle. Nature 327: 247–249.CrossRefGoogle Scholar
  5. Beeman, R. W., Stuart, J. J., Haas, M. S., and Denell, R. E. 1989. Genetic analysis of the homeotic gene complex (HOM-C) in the beetle Tribolium castaneum. Dev. Biol. 133: 196–209.PubMedCrossRefGoogle Scholar
  6. Brown, S. J., Henry, J. K., Black, W. C. IV, and Denell, R. E. Molecular genetic manipulation of the red flour beetle: Genome organization and cloning of a ribosomal protein gene. Insect Biochem. (in press).Google Scholar
  7. Carroll, S. B., DiNardo, S., O’Farrell, P. H., White, R. A. H. and Scott, M. P. 1988. Temporal and spatial relationships between segmentation and homeotic gene expression in Drosophila embryos: Distributions of the fushi tarazu, engrailed, Sex combs reduced, Antennapedia, and Ultrabithorax proteins. Genes Dev. 2: 350–360.PubMedCrossRefGoogle Scholar
  8. Desplan, C., Theis, J. and O’Farrell, P. H. 1988. The sequence specificity of homeodomain- DNA interaction. Cell 75: 1081–1090.CrossRefGoogle Scholar
  9. DiNardo, S. and O’Farrell, P. H. 1987. Establishment and refinement of segmental pattern in the Drosophila embryo: spatial control of engrailed expression by pair-rule genes. Genes Dev. 1: 1212–1225.PubMedCrossRefGoogle Scholar
  10. Duboule, D. and Dollé, P. 1989. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. Embo. J. 8: 1497–1505.PubMedGoogle Scholar
  11. Duncan, I. 1987. The Bithorax complex. Ann. Rev. Genet. 21: 285–319.PubMedCrossRefGoogle Scholar
  12. Glicksman, M. A. and Brower, D. L. 1988. Misregulation of homeotic gene expression in Drosophila larvae resulting from mutations at the extra sex combs locus. Dev. Biol. 126: 219–229.PubMedCrossRefGoogle Scholar
  13. Graham, A., Papalopulu, N., and Krumlauf, R. 1989. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57: 367–378.PubMedCrossRefGoogle Scholar
  14. Ingham, P. W. 1988. The molecular genetics of embryonic pattern formation in Drosophila. Nature 335: 25–34.PubMedCrossRefGoogle Scholar
  15. Karr, T. L., Weir, M. P., Ali, Z. and Kornberg, T. 1989. Patterns of engrailed protein in early Drosophila embryos. Development 105: 605–612.PubMedGoogle Scholar
  16. Kaufman, T. C. and Olsen, G. 1990. The homeotic genes of the Antennapedia gene complex of Drosophila melanogaster. Amer. Nat. (in press).Google Scholar
  17. Lawrence, P. A. 1988. The present status of the parasegment. Development 104(supp.): 61–64.Google Scholar
  18. Lewis, E. B. 1963. Genes and developmental pathways. Am. Zool. 3: 33–56.Google Scholar
  19. Lewis, E.B. 1978. A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.PubMedCrossRefGoogle Scholar
  20. Martinez-Arias, A. 1986. The Antennapedia gene is required and expressed in parasegments 4 and 5 of the Drosophila embryo. EMBO J. 5: 135–141.PubMedGoogle Scholar
  21. Martinez-Arias, A. and Lawrence, P. A. 1985. Parasegments and compartments in the Drosophila embryo. Nature 313: 639–642.PubMedCrossRefGoogle Scholar
  22. Patel, N. H., Kornberg, T. B. and Goodman, C. S. 1989. Expression of engrailed during segmentation in grasshopper and crayfish. Development 107: 201–213.PubMedGoogle Scholar
  23. Sander, K. 1976. Specification of the basic body pattern in insect embryogenesis. Adv. Insect Physiol. 12: 125–238.CrossRefGoogle Scholar
  24. Sokoloff, A. 1972. “The Biology of Tribolium.” vol. 1. Oxford Press, London. pp 300.Google Scholar
  25. Struhl, G. 1981. A homeotic mutation transforming leg to antenna in Drosophila. Nature 292: 635–638.PubMedCrossRefGoogle Scholar
  26. Tazima, Y. 1964. “The Genetics of the Silkworm.” Academic Press, London.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • R. W. Beeman
    • 1
  • S. J. Brown
    • 2
  • J. J. Stuart
    • 1
  • R. E. Denell
    • 2
  1. 1.U.S. Grain Marketing Research Laboratory, Agricultural Research ServiceU.S. Department of AgricultureManhattanUSA
  2. 2.Division of BiologyKansas State UniversityManhattanUSA

Personalised recommendations