Advertisement

Biochemistry and Endocrine Regulation of Sex Pheromone Production in the Housefly and German Cockroach

  • Gary J. Blomquist
  • Coby Schal
Chapter

Abstract

There has been a dramatic increase of interest in the biosynthesis of insect sex pheromones over the last decade (Prestwich and Blomquist, 1987). It now appears that many of the rather novel compounds that are components of insect sex pheromones are produced by the addition of a few ancillary enzymes to those of “normal” metabolism. For example, the carbon skeletons of many lepidopteran sex pheromones are produced from common fatty acids by a novel delta-ll desaturase and highly specific chain-shortening reactions (Bjostad et al., 1987). In the Coleoptera, sex pheromones are often produced by the use of one or two highly specific enzymes that convert dietary material, usually isopreniod, to active pheromones (Vanderwel and Oehlschlager, 1987). By using one or a few ancillary enzymes to alter the products of the usual lipid metabolic pathways or to alter dietary constituents, the insect requires much less genetic material than would be necessary to code for a complete set of enzymes that would be expressed only in the pheromone-producing tissue. This phenomenon appears to exist in the housefly, Musca domestica, and the German cockroach, Blattella germanica, as hormone control of several enzymes could account for alteration of the products of cuticular lipid biosynthesis to produce the female-specific sex pheromone components.

Keywords

Juvenile Hormone Pheromone Component Musca Domestica Methyl Ketone Pheromone Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, T. S. and Holt, G. G. 1987. Effect of pheromone components when applied to different models on male sexual behavior in the housefly, Musca domestica. J. Insect Physiol. 33: 9–18.CrossRefGoogle Scholar
  2. Adams, T. S., Dillwith, J. W. and Blomquist, G. J. 1984a. The role of 20-hydroxyecdysone in housefly sex pheromone biosynthesis. J. Insect Physiol. 30: 287–294.CrossRefGoogle Scholar
  3. Adams, T. S., Holt, G. G. and Blomquist, G. J. 1984b. Endocrine control of pheromone biosynthesis and mating behavior in the housefly, Musca domestica. pp 441–456 in: “Advances in Invertebrate Reproduction 3.” Engels, W. ed. Elsevier, Amsterdam.Google Scholar
  4. Adams, T. S., Hagedorn, H. H. and Wheelock, G. D. 1985. Hemolymph ecdysteroid in the housefly, Musca domestica, during oogenesis and its relationship with vitellogenin levels. J. Insect Physiol. 31: 91–97.CrossRefGoogle Scholar
  5. Ahmad, S., Kirkland, K. E. and Blomquist, G. J. 1987. Evidence for a sex pheromone metabolizing cytochrome P-450 monooxygenase in the housefly. Arch. Insect Biochem. Physiol. 6: 121–140.CrossRefGoogle Scholar
  6. Augustynowicz, M., Malinski, E., Warnke, Z., Szafranek, J., and Nawrot, J. 1987. Cuticular hydrocarbons of the German cockroach, Blattella germanica. Comp. Biochem. Physiol. 86B: 519–523.Google Scholar
  7. Barth, R. H. 1961. Hormonal control of sex attractant production in the Cuban cockroach. Science 133: 1598–1599.PubMedCrossRefGoogle Scholar
  8. Barth, R.H., Jr. 1962. The endocrine control of mating behavior in the cockroach Byrsotria fumigata. Gen. Comp. Endocr. 2: 53–69.PubMedCrossRefGoogle Scholar
  9. Barth, R. H. 1965. Insect mating behavior: Endocrine control of a chemical communication system. Science 149: 882–883.PubMedCrossRefGoogle Scholar
  10. Barth, R.H., Jr., and Lester, L.J. 1973. Neuro-hormonal control of sexual behavior in insects. Ann. Rev. Entomol. 18: 445–472.CrossRefGoogle Scholar
  11. Bell, W.J., and Barth, R.J., Jr. 1970. Quantitative effects of juvenile hormone on reproduction in the cockroach Byrsotria fumigata. J. Insect Physiol. 16: 2303–2313.CrossRefGoogle Scholar
  12. Bjostad, L. B., Wolf, W. A. and Roelofs, W. L. 1987. Pheromone biosynthesis in lepidopterans: Desaturation and chain shortening. pp 77–120 in: “Pheromone Biochemistry.” Prestwich, G. D. and Blomquist, G. J., eds. Academic Press, New York, N. Y.Google Scholar
  13. Blomquist, G. J., Adams, T. S. and Dillwith, J. W. 1984a. Induction of female sex phermone production in male houseflies by ovarian implants or 20-hydroxyecdysone. J. Insect Physiol. 30: 295–302.CrossRefGoogle Scholar
  14. Blomquist, G. J., Dillwith, J. W. and Pomonis, J. G. 1984b. Sex pheromone of the housefly: Metabolism of (Z)-9-tricosene to (Z)-9,10-epoxytricosane and (Z)-14- tricosene-10-one. Insect Biochem. 14: 279–284.CrossRefGoogle Scholar
  15. Blomquist, G. J. and Dillwith, J. W. 1983. Pheromones: Biochemistry and Physiology. pp 527–542 in: “Endocrinology of Insects.” Downer, R. G. H. and Laufer, H., eds. Vol 1. Alan R. Liss, New York, N. Y.Google Scholar
  16. Blomquist, G. J., Dillwith, J. W. and Adams, T. S. 1987. Biosynthesis and endocrine regulation of sex pheromone production in Diptera. pp 217–250 in: “Pheromone Biochemistry.” Prestwich, G. D. and Blomquist, G. J., eds. Academic Press, Inc. New York, N.Y.Google Scholar
  17. Borden, J. H., Nair, K. K. and Slater, C. E. 1969. Synthetic juvenile hormone: Induction of sex pheromone production in Ips confusus. Science 166: 1626–1627.CrossRefGoogle Scholar
  18. Bownes, M. 1982. The role of yolk polypeptide synthesis by male and female fat bodies of Drosophila melanogaster. J. Insect Physiol. 28: 317–328.CrossRefGoogle Scholar
  19. Bownes, M. 1986. Expression of the genes coding for vitellogenin (yolk protein). Annu. Rev. Entomol. 31: 507–531.CrossRefGoogle Scholar
  20. Carlson, D.A., and Brenner, R.J. 1988. Hydrocarbon-based discrimination of the North American Blatella cockroach species using gas chromatography. Ann. Entomol. Soc. Am. 81: 711–723.Google Scholar
  21. Carlson, D. A., Mayer, M. S., Silhacek, D. L., Beroza, M. and Bierl, B. A. 1971. Sex attractant pheromone of the housefly: Isolation, identification and synthesis. Science 174: 76–78.PubMedCrossRefGoogle Scholar
  22. Chase, J., Jurenka, R.A., Schal, C., Halarnkar, P.P., and Blomquist, G.J. 1990. Biosynthesis of methyl branched hydrocarbons: Precursors of the female contact sex pheromone of the German cockroach Blattella germanica. Insect Biochem. 20: 149–156.CrossRefGoogle Scholar
  23. Cusson, J., and McNeil, J.N. 1989. Involvement of juvenile hormone in the regulation of pheromone release activities in a moth. Science 243: 210–212.PubMedCrossRefGoogle Scholar
  24. de Renobales, ML, Wakayama, E J., Halarnkar, R. C., Reitz, R. C. and Blomquist, G. J. 1986. Inhibition of hydrocarbon biosynthesis in the housefly be 2-octadecynoate. Arch. Insect Biochem. Physiol. 3: 75–86.CrossRefGoogle Scholar
  25. Dillwith, J. W., Adams, T. S., and Blomquist, G. L. 1983. Correlation of housefly sex pheromone production with ovarian development. J. Insect Physiol. 29: 377–386.CrossRefGoogle Scholar
  26. Dillwith, J. W. and Blomquist, G. J. 1982. Site of sex pheromone biosynthesis in the female housefly, Musca domestica. Experientia 38: 471–473.CrossRefGoogle Scholar
  27. Dillwith, J. W., Blomquist, G. J. and Nelson, D. R. 1981. Biosyntheisis of the hydrocarbon components of the sex pheromone of the housefly, Musca domestica. Insect Biochem. 11: 247–253.CrossRefGoogle Scholar
  28. Engelmann, F. 1960. Mechanisms controlling reproduction in two viviparous cockroaches (Blataria). Ann. N. Y. Acad. Sci. 89: 516–536.CrossRefGoogle Scholar
  29. Gadot, M., Chiang, A-S., and Schal, C. 1989a. Farensoic acid-stimulated rates of juvenile hormone biosynthesis during the gonotrophic cycle of Blatteila germanica, J. Insect Physiol. 35: 537–542.CrossRefGoogle Scholar
  30. Gadot, M., Burns, E., and Schal, C. 1989b. Juvenile hormone biosynthesis and oocyte development in adult female Blattella germanica: Effects of grouping and mating. Arch. Insect Biochem. Physiol. 11: 189–200.CrossRefGoogle Scholar
  31. Gadot, M., Chiang, A-S., Burns, E. and Schal, C. 1990. Patterns of corpora allata activity in ovariectomized Blattella germanica. pp 321–324 in: “Insect Neurochemistry and Neurophysiology.” Borkovec, A.B. and Masler, E. P., eds. Humana Press, Clifton New Jersy.Google Scholar
  32. Hagedorn, H. H. 1985. The role of ecdysteroids in reproduction. pp 205–262 in: “Comprehensive Insect Physiology, Biochemistry, and Pharmacology.” Vol 8. Kerkut, G. A. and Gilbert, L. I., eds. Pergamon Press, Oxford.Google Scholar
  33. Hughes, P. R. and Renwick, J. A. A. 1977. Neural and hormonal control of pheromone biosynthesis in the bark beetle Ips paraconfusus, Physiol. Entomol. 2: 117–123.CrossRefGoogle Scholar
  34. Huybrechts, R. and De Loof, A. 1977. Induction of vitellogenin synthesis in male Sarcophaga bullata by ecdysterone. J. Insect Physiol. 23: 1359–1362.CrossRefGoogle Scholar
  35. Huybrechts, R. and De Loof, A. 1981. Effect of ecdysterone on vitellogenin concentration in haemolymph of male and female Sarcophaga Bullata, Int. J. Invert. Reprod. 3: 157–168.CrossRefGoogle Scholar
  36. Jurenka, R. A., Schal, C., Burns, E., Chase, J., and Blomquist, G. J. 1989. Structural correlation between the cuticular hydrocarbons and the female contact sex pheromone of the German cockroach Blattella germanica, J. Chem. Ecol. 15: 939–949.PubMedCrossRefGoogle Scholar
  37. Kunkel, J. G. 1981. A minimal model of metamorphosis-fat body competence to respond to juvenile hormone. pp 107–129 in: “Current Topics in Insect Endocrinology and Nutrition.” Bhaskaran, G., Friedman, M. and Rodriguez, J., eds. Plenum Press, New York.CrossRefGoogle Scholar
  38. Lanzrein, B., Wilhelm, R., and Gentinetta, V. 1981. On relations between corpus allatum activity and oocyte maturation in the cockroach Nauphoeta cinerea. pp 149–160 in: “Regulation of Insect Development and Behaviour.” Sehnal, F, Zabza, B., Menn, J J., and. Cymborowski, B, eds. Wroclaw Technical Univ. Press. Wroclaw, Poland.Google Scholar
  39. Liang, D., and Schal, C. 1990. Effects of pheromone concentration and photoperiod on the behavioral response sequence to sex pheromone in the male brown-banded cockroach, Supella longipalpa, J. Insect Behav. 3: 218–223.Google Scholar
  40. Menon, M. 1970. Hormone-pheromone relationships in the beetle, Tenebrio molitor, J. Insect Physiol. 16: 1123–1139.PubMedCrossRefGoogle Scholar
  41. Menon, M. 1976. Hormone-pheromone relationships of male Tenebrio molitor, J. Insect Physiol. 22: 1021–1023.CrossRefGoogle Scholar
  42. Nishida, R., and Fukami, J. 1983. Female sex pheromone of the German cockroach, Blattella germanica. Memoirs Coll. Agric. Kyoto Univ. 122: 1–24.Google Scholar
  43. Nishida, R. Fukami, H., and Ishii, S. 1974. Sex pheromone of the German cockroach (Blattella germanica) responsible for male wing- raising: 3,11-dimethyl-2-nona- cosanone. Experientia 30: 978–979.PubMedCrossRefGoogle Scholar
  44. Nishida, R., Sato, T., Kuwahara, Y., Fukami, H., and Ishii, S. 1976. Female sex pheromone of the German cockroach, Blattella germanica, responsible for male wing-raising. II. 29-hydroxy-3,11-dimethyl-2-nonacosanone. J. Chem. Ecol. 2: 449–455.CrossRefGoogle Scholar
  45. Percy-Cunningham, J. and MacDonald, J. A. 1987. Biology and ultrastructure of sex pheromone-producing glands. pp 27–75 in: “Pheromone Biochemistry.” Prestwich, G. D. and Blomquist, G. J., eds. Academic Press, New York, N. Y.Google Scholar
  46. Prestwich, G. D. and Blomquist, G. B. 1987. “Pheromone Biochemistry.” Academic Press, New York, N.Y. 565 pp.Google Scholar
  47. Raina, A. K. and Menn, J. J. 1987. Endocrine regulation of pheromone production in Lepidoptera. pp 159–174. in: “Pheromone Biochemistry.” Prestwich, G. D. and Blomquist, G. J., eds. Academic Press, New York, N.Y.Google Scholar
  48. Rogoff, W. M., Beltz, A. D., Johnsen, J. O. and Plapp, F. W. 1964. A sex pheromone in the housefly, Musca domestica. J. Insect Physiol. 101: 239–246.CrossRefGoogle Scholar
  49. Rogoff, W. M., Gretz, G. H., Sonnet, P. F. and Schwarz, M. 1980. Response of male houseflies to muscalure and to combinations of hydrocarbons with and without muscalure. Environ. Entomol. 9: 605–606.Google Scholar
  50. Roth, L. M., and Willis, E. R. 1952. A study of cockroach behavior. Am. Midl. Nat. 47: 65–129.Google Scholar
  51. Roth, L. M., and Barth, R: J., Jr. 1964. The control of sexual receptivity in female cockroaches. J. Insect Physiol. 10: 965–975.CrossRefGoogle Scholar
  52. Schal, C. 1988. Regulation of pheromone synthesis and release in cockroaches. pp 695–700 in: “Endocrinological Frontiers in Physiological Insect Ecology.” Sehnal, F., Zabza, A., and Denlinger, D.L., eds. Wroclaw Tech. Univ. Press, Wroclaw, Poland.Google Scholar
  53. Schal, C., Burns, E. L., and Blomquist, G. J. 1990a. Endocrine regulation of female contact sex pheromone production in the German cockroach, Blattella germanica. Physiol. Entomol. 15: 81–91.CrossRefGoogle Scholar
  54. Schal, C., Burns, E. L., Jurenka, R. A., and Blomquist, G. J. 1990b. A new component of the female sex pheromone of Blattella germanica, and interaction with other pheromone components. J. Chem. Ecol. 16: 1997–2008.PubMedCrossRefGoogle Scholar
  55. Schal, C., and Smith, A. F. 1989. Neuroendocrine regulation of pheromone production in cockroaches. pp 179–200 in: “Cockroaches as models for neurobiology: Applications in biomedical research.” Huber, I., Rao, B.R., and Masler, E.P., eds. CRC Press, Boca Raton, Florida.Google Scholar
  56. Schlein, T, Galun, R. and Ben-Eliahu, M. N. 1980. The legs of Musca domestica and Glossina morsitans females as the site of sex pheromone release. Experientia 36: 1174–1175.CrossRefGoogle Scholar
  57. Smith, A. F., and Schal, C. 1990a. Corpus allatum control of sex pheromone production and calling in the female brown-banded cockroach, Supella longipalpa. J. Insect Physiol. (in press).Google Scholar
  58. Smith, A. F., and Schal, C. 1990b. The physiological basis for the termination of pheromone-releasing behaviour in the female brown- banded cockroach, Supella longipalpa. J. Insect Physiol. (in press).Google Scholar
  59. Smith, A. F., Yagi, K., Tobe, S. S. and Schal, C. 1989. In vitro juvenile hormone biosynthesis in adult virgin and mated female brown-banded cockroaches, Supella longipalpa. J. Insect Physiol. 35: 781–785.CrossRefGoogle Scholar
  60. Stay, B., Tobe, S. S., Mundall, E. C., and Rankin, S, 1983. Ovarian stimulation of juvenile hormone biosynthesis in the viviparous cockroach, Diploptera punctata. Gen. Comp. Endocr. 52: 341–349.PubMedCrossRefGoogle Scholar
  61. Tamaki, Y. 1985. Sex pheromones. Vol. 9 pp 145–192 in: “Comprehensive Insect Physiology, Biochemistry, and Pharmacology.” G.A. Kerkut and L.I. Gilbert, eds. Pergamon Press, Oxford.Google Scholar
  62. Tang, J. D., Charlton, R. E., Jurenka, R. A., Wolf, W. A., Phelan, P. L., Sreng, L. and Roelofs, W. L. 1989. Regulation of pheromone biosynthesis by a brain hormone in two moth species. Proc. Natl. Acad. Sci. USA 86: 1806–1810.PubMedCrossRefGoogle Scholar
  63. Uebel, E. C., Schwarz, M., Lusby, W. R., Miller, R. W. and Sonnet, P. E. 1978. Cuticular non-hydrocarbon s of the female housefly and their evaluation as mating stimulants. Lloydia 41: 63–67.Google Scholar
  64. Uebel, E. C., Sonnet, P. E. and Miller, R. W. 1976. Housefly sex pheromone: Enhancement of mating strike activity by combination of (Z)-9-tricosene with branched saturated hydrocarbons. J. Econ. Entomol. 5: 905–908.Google Scholar
  65. Vanderwel, D. and Oehlschlager, A. C. 1987. Biosynthesis of pheromones and endocrine regulation of pheromone production in Coleoptera. pp 175–215 in: “Pheromone Biochemistry”, Prestwich, G. D. and Blomquist, G. J., eds. Academic Press, New York, N.Y.Google Scholar
  66. Vaz, A. H., Blomquist, G. J. and Reitz, R. C. 1988. Characterization of the fatty acyl elongation reactions involved in hydrocarbon biosynthesis in the housefly, Musca domestica. Insect Biochem. 18: 177–184.CrossRefGoogle Scholar
  67. Vaz, A. H., Brownson, E. A., Blomquist, G. J. and Reitz, R. C. 1989. Sex pheromone biosynthesis in the housefly: Evidence for the regulation of the fatty acyl-CoA desaturation and elongation system by 20-hydroxyecdysone. Arch Insect Biochem. Physiol. 12: 173–186–186.CrossRefGoogle Scholar
  68. Weaver, R. J. 1984. Effects of food and water availability, and of NCA-1 section, upon juvenile hormone biosynthesis and oocyte development in adult female Periplaneta americana. J. Insect Physiol. 30: 831–838.CrossRefGoogle Scholar
  69. Woodhead, A. P., and Stay, B. 1989. Neural inhibition of corpora allata in protein-deprived Diploptera punctata. J. Insect Physiol. 35: 415–421.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Gary J. Blomquist
    • 1
  • Coby Schal
    • 2
  1. 1.Department of BiochemistryUniversity of NevadaRenoUSA
  2. 2.Department of Entomology, Cook CollegeRutgers UniversityNew BrunswickUSA

Personalised recommendations