Advertisement

Molecular Approaches to the Production and Action of Eclosion Hormone

  • James W. Truman
  • Frank M. Horodyski
  • David B. Morton
  • Lynn M. Riddiford

Abstract

Ecdysis involves more than just the shedding of an old cuticle. The ecdysis of the adult, for example, is the time when the new imago first confronts the external world, and at this time many behavioral and physiological systems first become activated. Studies on the hormonal regulation of this event began 20 years ago with the report that a transplanted brain could control the timing of ecdysis of a debrained host (Truman and Riddiford, 1970). A factor that induces precocious ecdysis was subsequently extracted from the brain and termed the eclosion hormone (EH; Truman, 1971). The sole known function of this hormone is to coordinate the events that occur at ecdysis. It acts directly on the central nervous system to release the appropriate ecdysial behaviors (e.g., Truman, 1978) but also has ecdysis-related effects on non-neural targets such as epidermis (Reynolds, 1977) and muscle (Schwartz and Truman, 1982).

Keywords

Tobacco Hornworm Intermolt Period Eclosion Hormone Circumesophageal Connective Ventromedial Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammerer G. 1983. Expression of genes in yeast using the ADC1 Promoter. Methods Enzymol. 101: 192–201.PubMedCrossRefGoogle Scholar
  2. Copenhaver P.F. and Truman J.W. 1986. Identification of the cerebral neurosecretory cells that produce eclosion hormone in the moth Manduca sexta. J. Neurosci. 6: 1738–1747.PubMedGoogle Scholar
  3. Horodyski F.M., Riddiford L.M. and Truman J.W. 1989. Isolation and expression of the eclosion hormone gene from the tobacco hornworm, Manduca sexta. Proc. Natl. Acad. Sci. U.S.A. 86: 8123–8127.PubMedCrossRefGoogle Scholar
  4. Kataoka H., Troestschler R.G., Kramer S.J., Cesarin B.J. and Schooley D.A. 1987. Isolation and primary structure of the eclosion hormone from the tobacco hornworm, Manduca sexta. Biochem. Biophys. Res. Commun. 146: 746–750.PubMedCrossRefGoogle Scholar
  5. Klein, W.L., Sullivan, J., Skorupa, A., and Aguila, J.S. 1989. Plasticity of neuronal receptors. FASEB J. 3: 2132–2140.PubMedGoogle Scholar
  6. Kono T., Nagasawa H., Isogai A., Fugo H., and Suzuki A. 1987. Amino acid sequences of the eclosion hormone of the silkworm, Bombyx mori. Agric. Biol. Chem. 51: 2307–2308.CrossRefGoogle Scholar
  7. Maeda, S. 1989. Expression of foreign genes in insects using baculovirus vectors. Ann. Rev. Entomol. 34: 351–372.CrossRefGoogle Scholar
  8. Marti T., Takio K., Walsh K.A., Terzi G. and Truman J.W. 1987. Microanalysis of the amino acid sequence of the eclosion hormone from the tobacco hornworm Manduca sexta. FEBS Lett. 219: 415–418.PubMedCrossRefGoogle Scholar
  9. Morton D.B. and Truman J.W. 1985. Steroid regulation of the peptide-mediated increase in cyclic GMP in the nervous system of the hawkmoth, Manduca sexta. J.Comp. Physiol. A. 157: 423–432.PubMedCrossRefGoogle Scholar
  10. Morton D.B. and Truman J.W. 1986. Substrate phosphoprotein availability regulates eclosion hormone sensitivity in an insect CNS. Nature 323: 264–267.PubMedCrossRefGoogle Scholar
  11. Morton D.B. and Truman J.W. 1988a. The EGPs — the eclosion hormone and cyclic GMP regulated phosphoproteins. I. Appearance and partial characterization in the CNS of Manduca sexta. J. Neurosci. 8: 1326–1337.PubMedGoogle Scholar
  12. Morton D.B. and Truman J.W. 1988b. The EGPs — the eclosion hormone and cyclic GMP regulated phosphoproteins. II. Regulation of appearance by the steroid hormone 20-hydroxyecdysone in Manduca sexta. J. Neurosci. 8: 1338–1345.PubMedGoogle Scholar
  13. Reynolds S.E. 1977. Control of cuticle extensibility in the wings of adult Manduca at the time of eclosion: Effects of eclosion hormone and bursicon. J. Exp. Biol. 70: 27–37.Google Scholar
  14. Schwartz L.M. and Truman J.W. 1982. Peptide and steroid regulation of muscle degeneration in an insect. Science 215: 1420–1421.PubMedCrossRefGoogle Scholar
  15. Schwartz L.M. and Truman J.W. 1984. Cyclic GMP may serve as a second messenger in peptide-induced muscle degeneration in an insect. Proc. Natl. Acad. Sci. U.S.A. 81: 6718–6722.PubMedCrossRefGoogle Scholar
  16. Terzi G., Truman J.W. and Reynolds S.E. 1988. Purification and characterization of eclosion hormone from the moth, Manduca sexta. J. Insect Physiol. 18: 701–707.Google Scholar
  17. Truman J.W. 1971. Physiology of insect ecdysis. I. The eclosion behavior of saturniid moths and its hormonal release. J. Exp. Biol. 54: 805–814.Google Scholar
  18. Truman J.W. 1978. Hormonal release of stereotyped motor programmes from the isolated nervous system of the Cecropia silkmoth. J. Exp. Biol. 74: 151–174.Google Scholar
  19. Truman J.W. and Copenhaver P.F. 1989. The larval eclosion hormone neurones in Manduca sexta: identification of the brain-proctodeal neurosecretory system. J. Exp. Biol. 147: 457–470.Google Scholar
  20. Truman J.W. and Riddiford L.M. 1970. Neuroendocrine control of ecdysis in silkmoths. Science 167: 1624–1626.PubMedCrossRefGoogle Scholar
  21. Truman J.W., Taghert P.H., Copenhaver P.F., Tublitz N.J., and Schwartz L.M. 1981. Eclosion hormone may control all ecdyses in insects. Nature 291: 70–71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • James W. Truman
    • 1
  • Frank M. Horodyski
    • 1
  • David B. Morton
    • 1
  • Lynn M. Riddiford
    • 1
  1. 1.Department of ZoologyUniversity of WashingtonSeattleUSA

Personalised recommendations