Advertisement

Neuropeptides of Mosquitoes

  • Arden O. Lea
  • Mark R. Brown
Chapter

Abstract

The adult mosquito, despite the limitations of its size, is a valuable experimental animal for the study of insect reproduction and such related processes as feeding behavior, digestion, water balance, anabolism, and the endocrine regulation of these processes. Mosquitoes could hardly escape our attention, since they are vectors of most of the transmissible pathogens that are lethal to several millions of humans each year. For many years, physiologists have been attracted to mosquitoes by the obvious association between their blood-feeding habits and oocyte maturation. Yet, the most salient question of how the ingestion of vertebrate blood signal the onset of oogenesis, remains only partially answered after nearly a half century of investigation.

Keywords

Blood Meal Adult Mosquito Malpighian Tubule Yellow Fever Mosquito Prothoracic Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, T. S., Hintz, A. M. and Pomonis, J. G. 1968. Oostatic hormone production in house flies, Musca domestica, with developing ovaries. J. Insect Physiol. 14: 983–993.PubMedCrossRefGoogle Scholar
  2. Borovsky, D. 1988. Oostatic hormone inhibits biosynthesis of midgut proteolytic enzymes and egg development in mosquitoes. Arch. Insect Biochem. Physiol. 7: 187–210.CrossRefGoogle Scholar
  3. Borovsky, D. 1985. Isolation and characterization of highly purified mosquito oostatic hormone. Arch. Insect Biochem. Physiol. 2: 333–349.CrossRefGoogle Scholar
  4. Borovsky, D. and Thomas, B. R. 1985. Purification and partial characterization of mosquito egg development neurosecretory hormone: evidence for gonadotropic and steroidogenic effects. Arch. Insect Biochem. Physiol. 2: 265–281CrossRefGoogle Scholar
  5. Brown, M. R. and Lea, A. O. 1988. FMRFamide- and adipokinetic hormone-like immunoreactivity in the nervous system of the mosquito, Aedes aegypti. J. Comp. Neuro. 270: 606–614.CrossRefGoogle Scholar
  6. Brown, M. R. and Lea, A. O. 1990. Neuroendocrine and midgut endocrine systems in the adult mosquito. in: “Advances in Disease Vector Research.” K. F. Harris, ed. Springer-Verlag, New York (in press).Google Scholar
  7. Brown, M. R., Raikhel, A. S. and Lea, A. O. 1985. Ultrastructure of midgut endocrine cells in the adult mosquito Aedes aegypti. Tissue Cell. 17: 709–721.PubMedCrossRefGoogle Scholar
  8. Brown, M. R., Crim, J. W. and Lea, A. O. 1986. FMRFamide- and pancreatic polypeptide-like immunoreactivity of endocrine cells in the midgut of a mosquito. Tissue Cell. 18 (3): 419–428.PubMedCrossRefGoogle Scholar
  9. Clements, A. N. 1956. Hormonal control of ovary development in mosquitoes. J. Exp. Biol. 33: 211–223.Google Scholar
  10. Crim, J. W., Jenkins, A. C., Brown, M. R., Herzog, G. A. and Lea, A. O. 1989. FMRF-amide in the corn earworm (Heliosthis zea): Immunoreactivity in the midgut and cerebral nervous system. in: “Proc. International Conf. Insect Neurochem. and Neurophysiol.” (In press).Google Scholar
  11. Detinova, T. S. 1945. On the influence of glands of internal secretion upon the ripening of the gonads and the imaginai diapause in Anopheles maculipennis. Zoologsky Zharnal. 24: 297–298.Google Scholar
  12. Fuchs, M. S., Sundland, B. R. and Kang, S.-H. 1980. In vivo induction of ovarian development in Aedes atropalpus by a head extract from Aedes aegypti. Int. J. Invert. Reprod. 2: 121–129.CrossRefGoogle Scholar
  13. Gillett, J. D. 1956. Initiation and promotion of ovarian development in the mosquito Aedes (Stegomyia) aegypti. Ann. Trop. Med. Parasitol. 50: 375–380.PubMedGoogle Scholar
  14. Hagedorn, H. H., O’Connor, J. D., Fuchs, M. S., Sage, G., Schlaeger, D. A. and Bohm, M. K. 1975. The ovary as a source of α-ecdysone in an adult mosquito. Proc. Natl. Acad. Sci. USA 72: 3255–3259.PubMedCrossRefGoogle Scholar
  15. Hagedorn, H. H., Shapiro, J. P. and Hanaoka, K. 1979. Ovarian ecdysone secretion is controlled by a brain hormone in an adult mosquito. Nature 282: 92–94.PubMedCrossRefGoogle Scholar
  16. Hanaoka, K., and Hagedorn, H. H. 1980. Brain hormone control of ecdysone secretion by the ovary in a mosquito. pp. 467–480 in: “Progress in Ecdysone Research”. J. A. Hoffman, ed. Amsterdam: Elsevier/North Holland.Google Scholar
  17. Hayes, T. K., Pannabecker, T. L., Hinckley, D. J., Holman, G. M., Nachman, R. J., Petzel, D. H. and Beyenbach, K. W. 1989. Leucokinins, a new family of ion transport stimulators and inhibitors in insect malpighian tubules. Life Sci. 44: 1259–1266.PubMedCrossRefGoogle Scholar
  18. Hecker, H., Freyvogel, T. A., Briegel, H. and Steiger, R. 1971a. Ultrastructural differentiation of the midgut epithelium in female Aedes aegypti imagines. Acta Trop. 28: 80–104.PubMedGoogle Scholar
  19. Hecker, H., Freyvogel, T. A., Briegel, H. and Steiger, R. 1971b. The ultrastructure of midgut epithelium in Aedes aegypti males. Acta Trop. 28: 275–290.PubMedGoogle Scholar
  20. Holman, G. M., Cook, B. J. and Nachman, R. J. 1986. Isolation, primary structure and synthesis of Leucomyosuppressin, an insect neuropeptide that inhibits spontaneous contraction of the cockroach hindgut. Comp. Biochem. Physiol. 85: 329–333.Google Scholar
  21. Huebner, E. and Davey, K.G. 1973. An antigonadotropin from the ovaries of the insect Rhodnius prolixus. Can. J. Zoo. 51(2): 113–119.CrossRefGoogle Scholar
  22. Kelly, T. J., Whisenton, L. R., Katahira, E. J., Fuchs, M. S., Borkovec, A. B. and Bollenbacher, W. E. 1986. Inter-species cross-reactivity of the prothoracicotropic hormone of Manduca sexta and egg-development neurosecretory hormone of Aedes aegypti. J. Insect Physiol. 32: 757–762.CrossRefGoogle Scholar
  23. Lea, A. O. 1967. The medial neurosecretory cells and egg maturation in mosquitoes. J. Insect Physiol. 13: 419–429PubMedCrossRefGoogle Scholar
  24. Lea, A. O. 1972. Regulation of egg maturation in the mosquito by the neurosecretory system: the role of the corpus cardiacum. Gen. Comp. Endocr. Suppl. 3: 602–608.CrossRefGoogle Scholar
  25. Lea, A. O. and Van Handel, E. 1970. Suppression of glycogen synthesis in the mosquito by a hormone from the medial neurosecretory cells. J. Insect Physiol. 16: 319–323.PubMedCrossRefGoogle Scholar
  26. Maddrell, S. H. P. and Phillips, J. E. 1978. Induction of sulphate transport and hormonal control of fluid secretion by malpighian tubules of larvae of the mosquito Aedes taeniorhynchus. J. Exp. Biol. 72: 181–202.Google Scholar
  27. Masler, E. P., Hagedorn, H. H., Petzel, D. H. and Borkovec, A. B. 1983. Partial purification of egg development neurosecretory hormone with reverse-phase liquid chromatographic techniques. Life Sci. 33: 1925–1931.PubMedCrossRefGoogle Scholar
  28. Matsumoto, S., Isogai, A. and Suzuki, A. 1985. N-terminal amino acid sequence of an insect neurohormone, melanization and reddish coloration hormone (MRCH): heterogeneity and sequence homology with insulin-like growth factor IL FEBS Lett. 189: 115–118.Google Scholar
  29. Matsumoto, S., Brown, M. R., Crim, J. W., Vigna, S. R. and Lea, A. O. 1989a. Isolation and primary structure of neuropeptides from the mosquito, Aedes Aegypti, immunoreactive to FMRFamide antiserum. Insect Biochem. 19: 277–283.CrossRefGoogle Scholar
  30. Matsumoto, S., Brown, M. R., Suzuki, A. and Lea, A. O. 1989b. Isolation and characterization of ovarian ecdysteroidogenic hormones from the mosquito, Aedes aegypti. Insect Biochem. 19: 651–656.CrossRefGoogle Scholar
  31. Meola, R. and Lea, A. O. 1972. Humoral inhibition of egg development in mosquitoes. J. Med. Ent. 9: 99–103.Google Scholar
  32. Nachman, R. J., Holman, G. M., Haddon, W. F. and Ling, N. 1986. Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science 234: 71–73.PubMedCrossRefGoogle Scholar
  33. Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Mizoguchi, A., Fujiwara, Y., Suzuki, A., Takahashi, S. Y. and Ishizaki, H. 1986. Amino acid sequence of a prothoracicotropic hormone of the silkworm Bombyx mori. Proc. Natl. Acad. Sci. USA 83: 5840–5843.PubMedCrossRefGoogle Scholar
  34. Nijhout, H. F., Carrow, G. M. 1978. Diuresis after a bloodmeal in female Anopheles freeborni. J. Insect Physiol. 24: 293–298.CrossRefGoogle Scholar
  35. Petzel, D. H., Hagedorn, H. H. and Beyenbach, K. W. 1985. Preliminary isolation of mosquito natriuretic factor. Am. J. Physiol. 18: R379-R386.Google Scholar
  36. Petzel, D. H., Hagedorn, H. H. and Beyenbach, K. W. 1986. Peptide nature of two mosquito natriuretic factors. Am. J. Physiol. 19: R328-R332.Google Scholar
  37. Petzel, D. H., Berg, M. M. and Beyenbach, K. W. 1987. Hormone-controlled cAMP-mediated fluid secretion in yellow-fever mosquito. Am. Physiol. Soc. 20: R701-R711.Google Scholar
  38. Stobbart, R. H. 1977. The control of the diuresis following a blood meal in females of the yellow fever mosquito Aedes aegypti. J. Exp. Biol. 69: 53–85.PubMedGoogle Scholar
  39. Thomson, E. 1952. Functional significance of the neurosecretory brain cells and the corpus cardiacum in the female blow-fly Calliphora erythrocephala. J. Exp. Biol. 29: 137–172.Google Scholar
  40. Van Handel, E. 1965. The obese mosquito. J.Physiol. 181: 478–486.PubMedGoogle Scholar
  41. Warren, J. T., Smith, W. and Gilbert, L. I. 1984. Simplification of the ecdysteroid radioimmunoassay by the use of protein A from Staphlococcus aureus. Experentia 40: 393–394.CrossRefGoogle Scholar
  42. Wheelock, G. D. and Hagedorn, H. H. 1985. Egg maturation and ecdysiotropic activity in extracts of mosquito (Aedes aegypti) heads. Gen. Comp. Endocrinol 60(2): 196–203.PubMedCrossRefGoogle Scholar
  43. Wheelock, G. D., Petzel, D. H., Gillett, J. D., Beyenbach, K. W. and Hagedorn, H. H. 1988. Evidence for hormonal control of diuresis after a blood meal in the mosquito Aedes aegypti. Arch. Insect Biochem. Physiol. 7: 75–89.CrossRefGoogle Scholar
  44. Whisenton, L. R., Kelly, T. J. and Bollenbacher, W. E. 1987. Multiple forms of cerebral peptides with steroidogenic functions in pupal and adult brains of the yellow fever mosquito, Aedes aegypti. Mol. Cell. Endocrinol. 50: 3–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Arden O. Lea
    • 1
  • Mark R. Brown
    • 1
  1. 1.Department of EntomologyUniversity of GeorgiaAthensUSA

Personalised recommendations