Developmental Regulation of Silk Gene Expression in Bombyx mori

  • Yoshiaki Suzuki
  • Shigeharu Takiya
  • Toshiharu Suzuki
  • Chi-chung Hui
  • Kenji Matsuno
  • Masakazu Fukuta
  • Toshifumi Nagata
  • Kohji Ueno


Our major concern has been understanding how cells are specialized and express a set of genes during development. Along this line, our target has been a dissection of silk gene regulation in the silk gland of Bombyx mori (Suzuki, 1977; Suzuki et al., 1987). The development of the silk gland originates as an invagination of the ectoderm in the labial segment of stage 19 embryos, and completes morphologically by stage 25 (Nunome, 1937). Transcription of the fibroin (heavy chain) gene (Suzuki and Brown, 1972; Suzuki et al., 1972; Ohshima and Suzuki, 1977; Tsujimoto and Suzuki, 1979a, b) begins at around stage 25 of the embryos (Ohta et al., 1988). After this first activation the fibroin gene is repeatedly switched on and off in the posterior silk gland cells during larval development (Suzuki and Suzuki, 1974; Suzuki and Giza, 1976; Maekawa and Suzuki, 1980). When fibroin gene transcription in the posterior silk glands of the fifth instar larvae was analyzed by nuclear run-on assays, it was found that the transcription is restricted to the anterior region at the beginning of the instar and spreads toward the posterior region as the stage proceeds (Obara and Suzuki, 1988). Transcription of the fibroin light chain (or P25) gene was found to occur in parallel with that of the fibroin gene during the fourth molting stage and the fifth larval instar (Couble et al., 1983; Kimura et al., 1985).


Homeotic Gene Silk Gland Upstream Element Posterior Silk Gland Middle Silk Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biggin, M. D. and Tjian, R. 1988. Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell 53: 699–711.PubMedCrossRefGoogle Scholar
  2. Bodner, M. and Karin, M. 1987. A pituitary-specific trans-acting factor can stimulate transcription from the growth hormone promoter in extracts of nonexpressing cells. Cell 50: 267–275.PubMedCrossRefGoogle Scholar
  3. Bodner, M, Castrillo, J.-L., Theill, L. E., Deerinck, T., Ellisman, M., and Karin, M. 1988. The pituitary-specific transcription factor GHF1 is a homeobox-containing protein. Cell 55: 505–518.PubMedCrossRefGoogle Scholar
  4. Corthesy, B., Hipskind, R., Theuraz, I., and Wahli, W. 1988. Estrogen-dependent in vitro transcription from the vitellogenin promoter in liver nuclear extracts. Science 239: 1137–1139.PubMedCrossRefGoogle Scholar
  5. Couble, P., Moine, A., Garel, A., and Prudhomme, J. C. 1983. Developmental variations of a non-fibroin mRNA encoding for a low molecular weight silk protein. Develop. Biol. 97: 398–407.PubMedCrossRefGoogle Scholar
  6. Couble, P., Michaille, J.-J., Garel, A., Couble, M.-L., and Prudhomme, J.-C. 1987. Developmental switches of sericin mRNA splicing in individual cells of Bombyx mori silkgland. Develop. Biol. 124: 431–440.PubMedCrossRefGoogle Scholar
  7. Davis, R. L., Weintraub, H., and Lassar, A. B. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000.PubMedCrossRefGoogle Scholar
  8. Desplan, C., Theis, J., and O’Farrell 1988. The sequence specificity of homeodomain-DNA interaction. Cell 54: 1081–1090.PubMedCrossRefGoogle Scholar
  9. Gorski, K., Carneiro, M., and Schibier, U. 1986. Tissue-specific in vitro transcription from the mouse albumin promoter. Cell 47: 767–776.PubMedCrossRefGoogle Scholar
  10. Hamada, Y., Yamashita, O., and Suzuki, Y. 1987. Haemolymph control of sericin gene expression studied by organ transplantation. Cell Differ. 20: 65–76.PubMedCrossRefGoogle Scholar
  11. Hoey, T. and Levine, M. 1988. Divergent homeo box proteins recognize similar DNA sequences in Drosophila. Nature 332: 858–861.PubMedCrossRefGoogle Scholar
  12. Hui, C.-C., and Suzuki, Y. 1989. Enhancement of transcription from the Ad2 major late promoter by upstream elements of the fibroin and sericin-1 genes in silk gland extracts. Gene 85: 405–413.Google Scholar
  13. Ishikawa, E. and Suzuki, Y. 1985. Tissue- and stage-specific expression of sericin genes in the middle silk gland of Bombys mori. Develop. Growth Differ. 27: 73–82.CrossRefGoogle Scholar
  14. Kimura, K., Oyama, F., Ueda, H., Mizuno, S., and Shimura, K. 1985. Molecular cloning of the fibroin light chain complementary DNA and its use in the study of the expression of the light chain gene in the posterior silk gland of Bombyx mori. Experientia 41: 1167–1171.PubMedCrossRefGoogle Scholar
  15. Ko, H.-S., Fast, P., McBride, W., and Staudt, L. M. 1989. A human protein specific for the immunoglobulin octamer DNA motif contains a functional homeobox domain. Cell 55: 135–144.CrossRefGoogle Scholar
  16. Maekawa, H. and Suzuki, Y. 1980. Repeated turn-off and turn-on of fibroin gene transcription during silk gland development of Bombyx mori. Develop. Biol. 78: 394–406.PubMedCrossRefGoogle Scholar
  17. Matsuno, K., Suzuki, T., Takiya, S., and Suzuki, Y. 1989a. Complex formation with the fibroin gene enhancer through a protein-protein interaction analyzed by a modified DNA-binding assay. J. Biol. Chem. 264: 4599–4604.PubMedGoogle Scholar
  18. Matsuno, K., Hui, C.-C, Takiya, S., Suzuki, T., Ueno, K., and Suzuki, Y. 1989b. Transcription signals and protein binding sites for sericin gene transcription in vitro. J. Biol. Chem. 264: 18707–18713.PubMedGoogle Scholar
  19. Mizushima-Sugano, J. and Roeder, R. G. 1986. Cell-type-specific transcription of an immunoglobulin k light chain gene in vitro. Proc. Natl. Acad. Sci. USA 83: 8511–8515.PubMedCrossRefGoogle Scholar
  20. Muller, M. M., Ruppert, S., Schaffner, W., and Matthias, P. 1988. A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 336: 544–551.PubMedCrossRefGoogle Scholar
  21. Nunome, J. 1937. The silk gland development of Bombyx mori. Bull. Appl. Zool. 9: 68–92 (in Japanese).Google Scholar
  22. Obara, T. and Suzuki, Y. 1988. Temporal and spatial control of silk gene transcription analyzed by nuclear run-on assays. Develop. Biol. 127: 384–391.PubMedCrossRefGoogle Scholar
  23. Ohshima, Y. and Suzuki, Y. 1977. Cloning of the silk fibroin gene and its flanking sequences. Proc. Natl. Acad. Sci. USA 74: 5363–5367.PubMedCrossRefGoogle Scholar
  24. Ohta, S., Suzuki, Y., Hara, W., Takiya, S., and Suzuki, T. 1988. Fibroin gene transcription in the embryonic stages of the silkworm, Bombyx mori. Develop. Growth &Differ. 30: 293–299.CrossRefGoogle Scholar
  25. Okamoto, H., Ishikawa, E., and Suzuki, Y. 1982. Structural analysis of sericin genes. J. Biol. Chem. 257: 15192–15199.PubMedGoogle Scholar
  26. Scheidereit, C., Cromlish, J. S., Gerster, T., Kawakami, K., Balmaceda, C.-G., Currie, R. A., and Roeder, R. G. 1988. A human lymphoid-specific transcription by mammalian RNA polymerase II. Nature 336: 551–557.PubMedCrossRefGoogle Scholar
  27. Soeller, W. C., Poole, S. J., and Kornberg, T. 1988. In vitro transcription of the Drosophila engrailed gene. Genes Dev. 2: 68–81.PubMedCrossRefGoogle Scholar
  28. Suzuki, Y. 1977. Differentiation of the silk gland: A model system for the study of differential gene action. pp. 1–44 in “Results and Problems in Cell Differentiation.” Vol. 8. Beermann, W. ed. Berlin/Heidelberg, Springer-Verlag.Google Scholar
  29. Suzuki, Y. and Brown, D. D. 1972. Isolation and identification of the messenger RNA for silk fibroin from Bombyx mori. J. Mol. Biol. 63: 409–429.PubMedCrossRefGoogle Scholar
  30. Suzuki, Y. and Suzuki, E. 1974. Quantitative measurements of fibroin messenger RNA synthesis in the posterior silk gland of normal and mutant Bombyx mori. J. Mol. Biol. 88: 393–407.PubMedCrossRefGoogle Scholar
  31. Suzuki, Y. and Giza, P. E. 1976. Accentuated expression of silk fibroin gene in vivo and in vitro. J. Mol. Biol. 107: 183–206.PubMedCrossRefGoogle Scholar
  32. Suzuki, Y. and Adachi, S. 1984. Signal sequences associated with fibroin gene expression are identical in fibroin-producer and -nonproducer tissues. Develop. Growth Differ. 26: 139–147.CrossRefGoogle Scholar
  33. Suzuki, T. and Suzuki, Y. 1988. Interaction of composite protein complex with the fibroin enhancer sequence. J. Biol. Chem. 263: 5979–5986PubMedGoogle Scholar
  34. Suzuki, Y., Gage, L. P., and Brown, D. D. 1972. The genes for fibroin in Bombyx mori. J. Mol. Biol. 70: 637–649.PubMedCrossRefGoogle Scholar
  35. Suzuki, Y., Tsuda, M., Takiya, S., Hirose, S., Suzuki, E., Kameda, M., and Ninaki, O. 1986. Tissue-specific transcription enhancement of the fibroin gene characterized by cell-free systems. Proc. Natl. Acad. Sci. USA 83: 9522–9526.PubMedCrossRefGoogle Scholar
  36. Suzuki, Y., Takiya, S., Hara, W., Obara, T., Suzuki, T., and Hui, C.-C. 1987. Developmental regulation of the tissue-specific genes and the homeotic genes in Bombyx mori. pp. 13–26 in “Gunma Symposium Endocrinology.” Vol. 24. Inst. Endocrinol., Gunma Univ. ed. Center for Academic Publications Japan, Tokyo and VNU Science Press BV, Utrecht.Google Scholar
  37. Suzuki, Y., Obara, T., Takiya, S., Hui, C.-c, Matsuno, K., Suzuki, T., Suzuki, E., Ohkubo M., and Tamura, T. 1990. Differential transcription of the fibroin and sericin-1 genes in cell-free extracts. Develop. Growth Differ. in press.Google Scholar
  38. Takiya, S., Hui, C.-C, and Suzuki, Y. 1990. A contribution of the core-promoter and its surrounding regions to the preferential transcription of the fibroin gene in posterior silk gland extracts. EMBO J. 9: 489–496.PubMedGoogle Scholar
  39. Tazima, Y. 1964. “The Genetics of the Silkworm.” pp. 60–75. Logos Press and Academic Press, London.Google Scholar
  40. Tsuda, M. and Suzuki, Y. 1981. Faithful transcription initiation of fibroin gene in a homologous cell-free system reveals an enhancing effect of 5′ flanking sequence far upstream. Cell 27: 175–182.PubMedCrossRefGoogle Scholar
  41. Tsuda, M. and Suzuki, Y. 1983. Transcription modulation in vitro of the fibroin gene exerted by a 200-base-pair region upstream from the “TATA” box. Proc. Natl. Acad. Sci. USA 80: 7442–7446.PubMedCrossRefGoogle Scholar
  42. Tsuda, M., Hirose, S., and Suzuki, Y. 1986. Participation of the upstream region of the fibroin gene in the formation of transcription complex in vitro. Mol. Cell. Biol. 6: 3928–3933.PubMedGoogle Scholar
  43. Tsujimoto, Y. and Suzuki, Y. 1979a. Structural analysis of the fibroin gene at the 5′ end and its surrounding regions. Cell 16: 425–436.PubMedCrossRefGoogle Scholar
  44. Tsujimoto, Y. and Suzuki, Y. 1979b. The DNA sequence of Bombyx mori fibroin gene including the 5’ flanking, mRNA coding, entire intervening and fibroin protein coding regions. Cell 18: 591–600.PubMedCrossRefGoogle Scholar
  45. Tsujimoto, Y. and Suzuki, Y. 1984. Natural fibroin genes purified without using cloning procedures from fibroin-producing and nonproducing tissues reveal indistinguishable structure and function. Proc. Natl. Acad. Sci. USA 81: 1644–1648.PubMedCrossRefGoogle Scholar
  46. Tsujimoto, Y., Hirose, S., Tsuda, M., and Suzuki, Y. 1981. Promoter sequence of fibroin gene assigned by in vitro transcription system. Proc. Natl. Acad. Sci. USA 78: 4838–4842.PubMedCrossRefGoogle Scholar
  47. Wolffe, A. P. and Brown, D. D. 1987. Differential 5S RNA gene expression in vitro. Cell 51: 733–740.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Yoshiaki Suzuki
    • 1
  • Shigeharu Takiya
    • 1
  • Toshiharu Suzuki
    • 1
  • Chi-chung Hui
    • 1
  • Kenji Matsuno
    • 1
  • Masakazu Fukuta
    • 1
  • Toshifumi Nagata
    • 1
  • Kohji Ueno
    • 1
  1. 1.Department of Developmental BiologyNational Institute for Basic BiologyJapan

Personalised recommendations