Oxygen as an Environmental Factor of Fishes

  • G. F. Holeton
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 35)


Ultimately the source of oxygen in the aquatic environment is photosynthesis. Bodies of water may be net exporters or importers of oxygen. In circumstances where plant life is abundant and light is available water bodies release a considerable amount of oxygen to the atmosphere.


Rainbow Trout Oxygen Uptake Oxygen Uptake Rate Brook Trout Environmental Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R. Mc. (1967). Functional design in fishes, London, Hutchinson.Google Scholar
  2. Anderson, J.R. (1973). The anaerobic resistance of Carassius auratus (L.). Ph. D. Thesis, Australiern Nat. Univ., 424 p.Google Scholar
  3. Ballantijn, C.M. (1972). Efficiency, mecanics and motor control of fish respiration. Respir. Physiol. 14: 123–141.Google Scholar
  4. Beamish, F.W.H. and Mookherji, P.S. (1964). Respiration of fishes with special emphasis on standard oxygen consumption. I. Influence of weight and temperature on respiration of goldfish. Can. J. Zool. 42: 161–173.CrossRefGoogle Scholar
  5. Blazka, P., Volt, M. and Cepela, M. (1960). A new type of respirometer for determination of the metabolism of fish in an active state. Physiol. Bohemoslov. 9: 333–338.Google Scholar
  6. Booth, J. (1978). The distribution of blood flow in the gills of fish: application of a new technique to rainbow trout (Salmo gairdneri). J. Exp. Biol. 73: 119–129.Google Scholar
  7. Booth, J. (1979). The effects of oxygen supply, epinephrine, and acetylcholine on the distribution of blood flow in trout gills. J. Exp. Biol. 83:31–39.Google Scholar
  8. Brett, J.R. (1964). The respiratory metabolism and swimming performance of young sockeye salmon. J. Fish. Res. Board Can. 21: 1183–1226.CrossRefGoogle Scholar
  9. Brett, J.R. (1970). 3. Temperature. 3.3 Animals. 3.3.2 Fishes. In Marine Ecology Vol I, Environmental Factors, O. Kinne, ed. Part I. New York, Wiley (Interscience), p. 513–560.Google Scholar
  10. Brett, J.R. (1972). The metabolic demand for oxygen in fish, particularly salmonids, and a comparison with other vertebrates. Respir. Physiol. 14: 151–170.CrossRefGoogle Scholar
  11. Brett, J.R. (1979). Environmental factors and growth. In “Fish Physiology”, W.S. Hoar, D.J. Randall and J.R. Brett eds., N.Y., Academic Press, p. 599–675.Google Scholar
  12. Brett, J.R. and Groves, T.D.D. (1979). Physiological energetics. In “Fish Physiology” Vol VIII, W.S. Hoar, D.J. Randall and J.R. Brett eds. N.Y., Academic Press, p. 279–352.Google Scholar
  13. Brown, C.E. and Muir, B.S. (1970). Analysis of ram ventilation of fish gills with application to skipjack tuna (Katsuwonus pelamis). J. Fish. Res. Board Can. 27: 1637–1652.CrossRefGoogle Scholar
  14. Bullock, T.H. (1955). Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. 30: 311–342.CrossRefGoogle Scholar
  15. Butler, P.J. and Taylor, E.W. (1971). Response of the dogfish (Scyliorhinus canicula L.) to slowly induced and rapidly induces hypoxia. Comp. Biochem. Physiol. 39A: 307–323.CrossRefGoogle Scholar
  16. Butler, P.J. and Taylor, E.W. (1975). The effect of progressive hypoxia on respiration in the dogfish (Scyliorhinus canicula) at different seasonal temperatures. J. Exp. Biol. 63: 117–130.Google Scholar
  17. Butler, P.J., Taylor, E.W. and Short, S. (1977). The effect of sectioning cranial nerves V, VII, IX and X on the cardiac response of the dogfish Scyliorhinus canicula to environmental hypoxia. J. Exp. Biol. 69: 233–245.Google Scholar
  18. Butler, P.J., Taylor, E.W., Capra, M.F. and Davison, W. (1978). The effect of hypoxia on the levels of circulating catecholamines in the dogfish Scyliorhinus canicula. J. Comp. Physiol. 127: 325–330.Google Scholar
  19. Cameron, J.N. (1974a). Evidence for the lack of by-pass shunting in teleost gills. J. Fish. Res. Board Can. 31: 211–213.Google Scholar
  20. Cameron, J.N. (1974b). Blood flow distribution as indicated by tracer microspheres in resting and hypoxic arctic grayling (Thymallus arcticus). Comp. Biochem. Physiol. 52A: 441–444.CrossRefGoogle Scholar
  21. Cameron, J.N. (1975). Morphometric and flow indicator studies of the teleost heart. Can. J. Zool. 53: 691–698.CrossRefGoogle Scholar
  22. Cameron, J.N. (1976). Branchial ion uptake in arctic grayling: resting values and effects of acid-base disturbance. J. Exp. Biol. 64: 711–725.Google Scholar
  23. Cameron, J.N. and Cech, J.J. (1970). Notes on the energy cost of gill ventilation in teleost. Comp. Biochem. Physiol. 34: 447–455.CrossRefGoogle Scholar
  24. Cameron, J.N. and Davis, J.C. (1970). Gas exchange in rainbow trout (Salmo gairdneri) with varying blood oxygen capacity. J. Fish. Res. Board Can. 27: 1069–1083.CrossRefGoogle Scholar
  25. Carey, F.G. and Teal, J.M. (1969a). Mako and porbeagle; warm bodied sharks. Comp. Biochem. Physiol. 28: 199–204.CrossRefGoogle Scholar
  26. Carey, F.G. and Teal, J. M. (1969b). Regulation of body temperature by the bluefin tuna. Comp. Biochem. Physiol. 28: 205–213.CrossRefGoogle Scholar
  27. Carey, F.G., Teal, J. M., Kanwisher, J.W., Lawson, K.D. and Beckett, J.S. (1971). Warm-bodied fish. Am. Zool. 11: 137–145.Google Scholar
  28. Dam, L. van (1938). On the utilization of oxygen and regulation of breathing in some aquatic animals. Dissertation, Univ. Groningen, Netherlands.Google Scholar
  29. Dandy, J.W.T. (1970). Activity response to oxygen in the brook trout Salvelinus fontinalis (Mitchill). Can. J. Zool. 48: 1067–1072.CrossRefGoogle Scholar
  30. Davis, J.C. (1975). Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish. Res. Board Can. 32: 2295–2332.CrossRefGoogle Scholar
  31. Davis, J.C. and Cameron, J.N. (1970). Water flow and gas exchange at the gills of the rainbow trout Salmo gairdneri. J. Exp. Biol. 54: 1–18.Google Scholar
  32. Davis, J.C. and Randall, D.J. (1973). Gill irrigation and pressure relationships in rainbow trout, Salmo gairdneri. J. Fish. Res. Board Can. 30: 99–104.CrossRefGoogle Scholar
  33. Daxboeck, C. and Holeton, G.F. (1978). Oxygen receptors in the rainbow trout, Salmo gairdneri. Can. J. Zool. 56: 1254–1259.CrossRefGoogle Scholar
  34. Daxboeck, C. and Holeton, G.F. (1980). The effect of MS-222 on the hypoxic response of the rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. In Press.Google Scholar
  35. Dejours, P. (1973). Problems of control of breathing in fishes. In “Comparative Physiology” L. Bolis, K. Schmidt-Nielsen and S.H.P. Maddrel eds. North Holland Publ. p. 117–133.Google Scholar
  36. Dejours, P., Toulmond, A. and Truchot, J.P. (1977). The effect of hyperoxia on the breathing of marine fishes. Comp. Biochem. Physiol. 58A: 409–411.CrossRefGoogle Scholar
  37. DeKock, L.L. (1963). A histological study of the head region of two salmonids with special reference to pressue and chemoreceptors. Acta. Anat. 55: 39–50.CrossRefGoogle Scholar
  38. Eclancher, B.(1972). Action des changements de PO2 de l’eau sur la ventilation de la truite et de la tanche. J. Physiol. Paris 65: 397A.Google Scholar
  39. Eddy, F.B. (1974). Blood gases of the tench (Tinca tinca) in well aerated and oxygen-deficient waters. J. Exp. Biol. 6071–83.Google Scholar
  40. Edwards, R.R.C. (1971). An assessment of the energy cost of gill ventilation in the plaice (Pleuronectes platessa L.). Comp. Biochem. Physiol. 40A: 391–398.CrossRefGoogle Scholar
  41. Evans, D.O. (1977). Seasonal changes in standard metabolism, upper and lower thermal tolerance and thermoregulatory behavior of the pumpkinseed, Lepomis gibbosus (Linnaeus). Ph.D. Thesis, Univ. Toronto, 429 p.Google Scholar
  42. Fairbridge, R.M. (1966). The encyclopaedia of Oceanography. N.Y. Reinhold, 1021 p.Google Scholar
  43. Farmer, G.J. and Beamish, F.W.H. (1969). Oxygen consumption of Tilapia nilotica in relation to swimming speed and salinity. J. Fish. Res. Board Can. 26: 2807–2821.CrossRefGoogle Scholar
  44. Freadman, M.A. (1979). Swimming energetics of striped bass (Morone saxatilis) and bluefish (Pomatomus saltatrix): gill ventilation and swimming metabolism. J. Exp. Biol. 83: 217–230.Google Scholar
  45. Fry, F.E.J. (1947). Effects of the environment on animal activity. Univ. Toronto Studies, Biol. Ser. 55; Publ. Ontario Fish. Res. Lab. 68: 1–62.Google Scholar
  46. Fry, F.E.J. (1957). The aquatic respiration of fish. In “The Physiology of Fishes” M.E. Brown ed., Vol. I, pp. 1–63. N.Y., Academic Press.CrossRefGoogle Scholar
  47. Fry, F.E.J. (1971). Effect of environmental factors. In “Fish Physiology” W.S. Hoar and D.J. Randall Eds. Vol. VI, p. 1–98. N.Y., Academic Press.Google Scholar
  48. Fry, F.E.J. and Hochachka, P.W. (1970). Fish. In “Comparative Physiology of Thermoregulation” G.C. Whittow ed. Vol. I, pp. 79–134. N.Y., Academic Press.Google Scholar
  49. Garey, W.F. and Rahn, H. (1970). Gas tensions in tissues of trout and carp exposed to diurnal changes in oxygen tension of the water. J. Exp. Biol. 52: 575–582.Google Scholar
  50. Gee, J.H., Tallman, R.F. and Smart, H.J. (1978). Reactions of some great plains fishes to progressive hypoxia. Can. J. Zool. 56: 1962–1966.CrossRefGoogle Scholar
  51. Glass, N.R. (1969). Discussions of calculation of power function with special reference to respiratory metabolism in fish. J. Fish. Res. Board Can. 26: 2643–2650.CrossRefGoogle Scholar
  52. Graham, J.B. (1973). Heat exchange in the black skipjack and the blood gas relationship of warm-bodied fishes. Proc. Nat. Acad. Sci. 70: 1964–1967.CrossRefGoogle Scholar
  53. Hall, F.G. (1930). The ability of the common mackerel to remove dissolved oxygen from sea water. Am. J. Physiol. 93: 417–421.Google Scholar
  54. Heisler, N. (1978). Bicarbonate exchange between body compartments after changes of temperature in the larger spotted dogfish (Scyliorhinus stellaris). Respir. Physiol. 33: 145–160.CrossRefGoogle Scholar
  55. Hemmingsen, E.A., Douglas, E.L., Johansen, K. and Millard, R.W. (1972). Aortic blood flow and cardiac output in the. hemoglobin-free fish Chaenocephalus aceratus. Comp. Biochem. Physiol. 43A: 1045–1051.CrossRefGoogle Scholar
  56. Hoglund, L.B. (1961). The reactions of fish in concentration gradients. Rep. Inst. Freshwater Res. Drottningholm 43: 1–147.Google Scholar
  57. Holeton, G.F. (1970). Oxygen uptake and circulation by a hemoglobinless antarctic fish (Chaenocephalus aceratus Lonnberg) compared with three red-blooded antarctic fish. Comp. Biochem. Physiol. 34: 457–471.CrossRefGoogle Scholar
  58. Holeton, G.F. (1971a). Oxygen uptake and transport by the rainbow trout during exposure to carbon monoxide. J. Exp. Biol. 54: 239–254.Google Scholar
  59. Holeton, G.F. (1971b). Respiratory and circulatory responses of rainbow trout larvae to carbon monoxide and to hypoxia. J. Exp. Biol. 55: 683–694.Google Scholar
  60. Holeton, G.F. (1972). Gas exchange in fish with and without hemoglobin. Respir. Physiol. 14: 142–130.CrossRefGoogle Scholar
  61. Holeton, G.F. (1973). Respiration of arctic char (Salvelinus alpinus) from a high arctic lake. J. Fish. Res. Board Can. 30: 717–723.CrossRefGoogle Scholar
  62. Holeton, G.F. (1974). Metabolic cold adaptation of polar fish: fact or artefact?. Physiol. Zool. 47: 137–152.Google Scholar
  63. Holeton, G.F. (1977). Constancy of arterial blood pH during CO-induced hypoxia in the rainbow trout Can. J. Zool. 55: 1010–1013.CrossRefGoogle Scholar
  64. Holeton, G.F. and Jones, D.R. (1975). Water flow dynamics in the respiratory tract of the carp (Cyprinus carpio L.). J. Exp. Biol. 63: 537–549.Google Scholar
  65. Holeton, G.F. and Randall, D.J. (1967a). Changes in blood pressure in the rainbow trout during hypoxia. J. Exp. Biol. 46: 297–305.Google Scholar
  66. Holeton, G.F. and Randall, D.J. (1967b). The effect of hypoxia upon the partial pressure of gases in the blood and water afferent and efferent to the gills of rainbow trout. J. Exp. Biol. 46: 317–327.Google Scholar
  67. Hughes, G.M. (1966). The dimensions of fish gills in relation to their function. J. Exp. Biol. 45: 177–195.Google Scholar
  68. Hughes, G.M. and Roberts, J.L. (1970). A study on the effects of temperature changes on the respiratory pumps of the rainbow trout. J. Exp. Biol. 52: 177–192.Google Scholar
  69. Hughes, G.M. and Shelton, G. (1958). The mechanism of gill ventilation in three freshwater teleosts. J. Exp. Biol. 35: 807–823.Google Scholar
  70. Hughes, G.M. and Shelton, G. (1962). Respiratory mechanisms and their nervous control in fish. In “Advances in Comparative Physiology and Biochemistry.”, O. Lowenstein ed., New York, Academy Press, p. 274–364.Google Scholar
  71. Hughes, G.M. and Singh, B.N. (1970). Respiration in an air breathing fish, the climbing perch Anabas testudineus (Bloch). I. Oxygen uptake and carbon dioxide release into air and water. J. Exp. Biol. 53: 265–280.Google Scholar
  72. Itazawa, Y. and Takeda, T. (1978). Gas exchange in the carp gills in normoxic and hypoxic conditions. Respir. Physiol. 35: 263–269.CrossRefGoogle Scholar
  73. Job, S.V. (1955). The oxygen consumption of Salvelinus fontinalis. Univ. Toronto Biol. Ser. 61; Publ. Ontario Fisheries Res. Lab. 73: 1–39.Google Scholar
  74. Johansen, K. (1971). Comparative physiology; gas exchange and circulation in fishes. A. Rev. Physiol. 33: 596–612.Google Scholar
  75. Jones, D.R. and Schwarzfeld, T. (1974). The oxygen cost to the metabolism and efficiency of breathing in trout (Salmo gairdneri). Respir. Physiol. 21: 241–254.CrossRefGoogle Scholar
  76. Jones, J.D. (1961). Aspects of respiration in Planorbis corneus L. and Lymnaea stagnalis L. (Gastropoda: Plumonata). Comp. Biochem. Physiol. 4: 1–29.CrossRefGoogle Scholar
  77. Jones, J.R.E. (1952). The reactions of fish to water of low oxygen concentration. J. Exp. Biol. 29: 403–415.Google Scholar
  78. Kramer, D.L.; Lindsey, C.C., Moodie, G.E.E. and Stevens, E.D. (1978). The fishes and aquatic environment of the central amazon basin, with particular reference to respiratory patterns. Can. J. Zool. 56: 717–729.CrossRefGoogle Scholar
  79. Krogh, A. (1914). The quantitative relation between temperature and standard metabolism in animals. Intern. Z. physik. chem. Biol. 1: 491–508.Google Scholar
  80. Laurent, P. (1977). Arterial chemoreceptive structures in fish. In “Morphology and Mechanics of Chemoreceptors.” A.S. Paintal ed., Pub. by Vallabhbhai Patel Chest Institute, Univ. Delhi, Delhi — 110 007. p. 275–281.Google Scholar
  81. Laurent, P. and Dunel, S. (1976). Functional organization of the teleost gill. I. Blood pathways. Acta. Zool. (Stockh.) 57: 189–209.CrossRefGoogle Scholar
  82. Piiper, J., Baumgarten, D. and Meyer, M. (1970). Effects of hypoxia upon respiration and circulation in the dogfish Scyliorhinus stellaris. Comp. Biochem. Physiol. 36: 513–552.CrossRefGoogle Scholar
  83. Poupa, O., Gesser, H., Johnsson, H. and Sullivan, L. (1974). Coronary supplied compact shell of ventricular myocardium in salmonids: growth and enzyme pattern. Comp. Biochem. Physiol. 48A: 85–95.CrossRefGoogle Scholar
  84. Rahn, H., Wangensteen, O.D. and Crowley, G.J. (1973). Tissue O2 and CO2 tensions of trout in high altitude lakes. Trans. Am. Fish. Soc. 102: 132–134.CrossRefGoogle Scholar
  85. Randall, D.J. (1970a). The circulatory system. In “Fish Physiology” Vol. IV, W.S. Hoar and D.J. Randall eds., N.Y., Academic Press. p. 133–172.Google Scholar
  86. Randall, D.J. (1970b). Gas exchange in fish. In “Fish Physiology.” Vol. IV, W.S. Hoar and D.J. Randall eds., N.Y., Academic Press. p. 253–293.Google Scholar
  87. Randall, D.J., Baumgarten, D. and Malyusz, M. (1972). The relationship between gas and ion transfer across the gills of fishes. Comp. Biochem. Physiol. 41 A: 629–637.CrossRefGoogle Scholar
  88. Randall, D.J. and Cameron, J.N. (1973). Respiratory control of arterial pH as temperature changes in rainbow trout Salmo gairdneri. Am. J. Physiol. 225: 997–1002.Google Scholar
  89. Randall, D.J., Holeton, G.F. and Stevens, E. Don (1967). The exchange of oxygen and carbon dioxide across the gills of rainbow trout. J. Exp. Biol. 6: 339–348.Google Scholar
  90. Randall, D.J. and Jones, D.R. (1973). The effect of deafferentation of the pseudobranch on the respiratory response to hypoxia and hyperoxia in the trout (Salmo gairdneri). Respir. Physiol. 17: 291–301.CrossRefGoogle Scholar
  91. Randall, D.J. and Smith, J.C. (1967). The regulation of cardiac activity in fish in a hypoxic environment. Physiol. Zool. 40: 104–113.Google Scholar
  92. Ricker, W.E. (1973). Linear regressions in fishery research. J. Fish. Res. Board Can. 30: 409–434.CrossRefGoogle Scholar
  93. Ricker, W.E. (1979). Growth rates and models. In: Fish Physiology, Vol. VIII, Eds. W.S. Hoar, D.J. Randall and J.R. Brett. New York, Academic Press, p. 677–743.Google Scholar
  94. Roberts, J.L. (1975). Active branchial and ram gill ventilation in fishes. Biol. Bull. 148: 85–105.CrossRefGoogle Scholar
  95. Satchell, G.H. (1971). Circulation in fishes. Cambridge Univ. Press. 131 p.Google Scholar
  96. Satchell, G.H. (1978). Microcirculation in fishes. In “Microcirculation”, Vol. 2, ed. G. Kaley and B.M. Altura, 756 p. Baltimore, Univ. Park Press.Google Scholar
  97. Saunders, R.L. (1962). The irrigation of the gills in fishes. II. Efficiency of oxygen uptake in relation to respiratory flow activity and concentration of oxygen and carbon dioxide. Can. J. Zool. 40: 817–862.CrossRefGoogle Scholar
  98. Scheid, P. and Piiper, J. (1976). Quantitative functional analysis of branchial gas transfer: theory and application to Scyliorhinus stellaris (Elasmobranchii). In “Respiration of Amphibious Vertebrates.” G.M. Hughes ed. London, Academic Press. p. 17–38.Google Scholar
  99. Scholander, P.F., Flagg, W., Walters, V. and Irving, L. (1953). Climatic adaptations in arctic and tropical poikilotherms. Physiol. Zool. 26: 67–92.Google Scholar
  100. Schumann, D. and Piiper, J. (1966). Der Sauerstoffbedarf der Atmung bei Fischen nach Messungen an der Narkotisierten Schleie (Tinca tinca). Pflugers Arch. ges. Physiol. 288: 15–26.CrossRefGoogle Scholar
  101. Shelton, G. (1970). The regulation of breathing. In “Fish Physiology” Vol. IV. Hoar, W.S. and Randall, D.J. eds. N.Y., Academic Press, p. 293–359.Google Scholar
  102. Shepard, M.P. (1955). Resistance and tolerance of young speckled trout (Salvelinus fontinalis) to oxygen lack, with special reference to low oxygen acclimation. J. Fish. Res. Board Can. 12: 387–434.CrossRefGoogle Scholar
  103. Skidmore, J. (1970). respiration and osmoregulation in rainbow trout with gills damaged by zinc sulphate. J. Exp. Biol. 52: 484–494.Google Scholar
  104. Smith, F.M. and Jones, D.R. (1978). Localization of receptors causing hypoxic bradycardia in trout (Salmo gairdneri). Can. J. Zool. 56: 1260–1265.CrossRefGoogle Scholar
  105. Sommers, P. van (1962). Oxygen-motivated behavior in the goldfish. Science 137: 678–679.CrossRefGoogle Scholar
  106. Steen, J.B. and Kruysse, E. (1964). The respiratory function of teleostean gills. Comp. Biochem. Physiol. 12: 127–142.CrossRefGoogle Scholar
  107. Stevens, E. Don (1972). Some aspects of gas exchange in tuna. J. Exp. Biol. 56: 809–823.Google Scholar
  108. Stevens, E.D. and Fry, F.E.J. (1971). Brain and muscle temperatures in ocean-caught and captive skipjack tuna. Comp. Biochem. Physiol. 38A: 203–211.CrossRefGoogle Scholar
  109. Stevens, E. Don and Holeton, G.F. (1978). The partitioning of oxygen uptake from air and from water by erythrinids. Can. J. Zool. 56: 965–969.CrossRefGoogle Scholar
  110. Stevens, E.D., Lam, H.M. and Kendall, J. (1974). Vascular anatomy of the counter current heat exchanger of skipjack tuna. J. Exp. Biol. 61: 145–153.Google Scholar
  111. Stevens, E. Don and Sutterlin, A. (1976). Heat transfer between fish and ambient water. J. Exp. Biol. 65: 131–145.Google Scholar
  112. Taylor, E.W., Short, S. and Butler, P. J. (1977). The role of the cardiac vagus in the response of the dogfish Scyliorhinus canicula to hypoxia. J. Exp. Biol. 70: 57–75.Google Scholar
  113. Whitmore, C.M., Warren, C.E. and Doudoroff, P. (1960). Avoidance reactions of salmonids and centrarchid fishes to low oxygen concentrations. Trans. Am. Fish. Soc. 89: 17–26.CrossRefGoogle Scholar
  114. Wohlschlag, D.E. (1964). Respiratory metabolism and ecological characteristics of some fishes in McMurdo sound, Antarctica. In “Biology of the antarctic seas” M.O. Lee ed. Am. Geophys. Union. Washington D.C., Antarct. Res. Ser. i: 33–62.Google Scholar
  115. Wood, S.C and Johansen, K. (1972). Adaptation to hypoxia by increased HbO2 affinity and decreased red cell ATP concentration. Nature, New Biol. 237: 278–279.CrossRefGoogle Scholar
  116. Wood, S.C., Johansen, K. and Weber, R.E. (1975). Effects of ambient PO2 on hemoglobin-oxygen affinity and red cell ATP concentration in a benthic fish, Pleuronectes platessa. Respir. Physiol. 25: 259–267.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • G. F. Holeton
    • 1
  1. 1.Department of ZoologyUniversity of TorontoTorontoCanada

Personalised recommendations