The Role of Temperature in the Environmental Physiology of Fishes

  • William W. Reynolds
  • Martha E. Casterlin
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 35)


Temperature is among the most pervasive and important physical factors in the environment of an organism. It is a measure of the average rate of random motions of atoms and molecules: the higher the temperature the faster the motion. Properties such as viscosity or fluidity, and changes in state from solid to liquid to gas, depend upon temperature. Diffusion rates increase as temperature increases, because the particles are moving faster. Only at absolute zero (0°K, or -273°C) does the motion virtually cease. Temperature also affects the rates of chemical reactions, since in order to react with one another to form new molecular combinations, two atoms or molecules must collide or come into close proximity to one another. The higher the temperature, the faster the random motion, and thus the more frequent will be the collisions. The life processes of living organisms, which are physicochemical in nature, are therefore profoundly affected by temperature. In general, higher temperatures tend to speed up these processes, but also tend to disrupt the structural integrity of the organism. As temperatures change, the rates of various processes must be balanced and coordinated. The organism must either compensate for the rate changes induced by changes in temperature (acclimation or acclimatization), or it must try to prevent or minimize changes in its body temperature (thermoregulation). A combination of these strategies can also be employed.


Rainbow Trout Locomotor Activity Smallmouth Bass Micropterus Salmoides Behavioral Thermoregulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alderdice, D.F. (1972). Responses of marine poikilotherms to environmental factors acting in concert. In: Marine Ecology, Vol. 1. Ed. O. Kinne. New York, Wiley-Interscience, p. 1659–1722.Google Scholar
  2. Bacon, E.J. Jr., Neill, W.H. Jr. and Kilambi, R.V. (1967). Temperature selection and heat resistance of the mosquitofish, Gambusia affinis. Proc. Ann. Conf. Southeast. Assoc. Game Fish Comm. 21: 411–416.Google Scholar
  3. Barans, B.A. and Tubb, R.A. (1973). Temperatures selected seasonally by four fishes from western Lake Erie. J. Fish. Res. Board Can. 30: 1697–1703.CrossRefGoogle Scholar
  4. Barlow, G.W. (1958). Daily movements of the desert pupfish Cyprinodon macularius in shore pools of the Salton Sea, California. Ecology 39: 580–587.CrossRefGoogle Scholar
  5. Bartholomew, G.A. (1977). Body temperature and energy metabolism. In: Animal Physiology, Principles and Adaptations. Ed. M.S. Gordon. New York, MacMillan, p. 364–449.Google Scholar
  6. Beitinger, T.L. and Magnuson, J.J. (1976). Low thermal responsiveness in the bluegill, Lepomis macrochirus. J. Fish. Res. Board Can. 33: 293–295.CrossRefGoogle Scholar
  7. Brett, J.R. (1956). Some principles in the thermal requirements of fishes. Quart Rev. Biol. 31: 75–87.CrossRefGoogle Scholar
  8. Brett, J.R. (1971). Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool. 11: 99–113.Google Scholar
  9. Brown, J.H. and Feldmeth, C.R. (1971). Evolution in constant and fluctuating environments: thermal tolerance of the desert pupfish (Cyprinodon). Evolution 25: 390–398.CrossRefGoogle Scholar
  10. Casterlin, M.E. and Reynolds, W.W. (1977). Behavioral fever in anuran amphibian larvae. Life Sci. 20: 593–596.CrossRefGoogle Scholar
  11. Casterlin, M.E. and Reynolds, W.W. (1979a). Shark thermoregulation. Comp. Biochem. Physiol., 64A: 451–453.CrossRefGoogle Scholar
  12. Casterlin, M.E. and Reynolds, W.W. (1979b). Thermoregulatory behavior of the bluespotted sunfish, Enneacanthus gloriosus. Hydrobiologia 64:3–4.CrossRefGoogle Scholar
  13. Casterlin, M.E. and Reynolds, W.W. (1980). Diel activity of the bluespotted sunfish, Enneacanthus gloriosus. Copeia 1980: 344–345.CrossRefGoogle Scholar
  14. Cherry, D.S., Dickson, K.L. and Cairns, J. Jr. (1975). Temperatures selected and avoided by fish at various acclimation temperatures. J. Fish. Res. Board Can. 32: 485–491.CrossRefGoogle Scholar
  15. Cherry, D.S., Dickson, K.L. and Cairns, J. Jr. (1977). Preferred, avoided and lethal temperatures of fish during rising temperature conditions. J. Fish. Res. Board Can. 34: 239–246.CrossRefGoogle Scholar
  16. Cossins, A.R. and Prosser, C.L. (1978). Evolutionary adaptation of membranes to temperature. Proc. Natl. Acad. Sci. U.S.A. 75: 2040–2043.CrossRefGoogle Scholar
  17. Coutant, C.C. (1977). Compilation of temperature preference data. J. Fish. Res. Board Can. 34: 739–745.CrossRefGoogle Scholar
  18. Covert, J.B. and Reynolds, W.W. (1977). Survival value of fever in fish. Nature (Lond.) 267: 43–45.CrossRefGoogle Scholar
  19. Crawshaw, L.I. (1975). Attainment of the final thermal preferendum in brown bullheads acclimated to different temperatures. Comp. Biochem. Physiol. 52A: 171–173.CrossRefGoogle Scholar
  20. Crawshaw, L.I. (1976). Effect of rapid temperature change on mean body temperature and gill ventilation in carp. Am. J. Physiol. 231: 837–841.Google Scholar
  21. Crawshaw, L.I. (1977). Physiological and behavioral reactions of fishes to temperature change. J. Fish. Res. Board Can. 34: 730–734.CrossRefGoogle Scholar
  22. Crawshaw, L.I. (1979). Responses to rapid temperature change in lower vertebrate ectotherms. Am. Zool. 19: 225–237.Google Scholar
  23. Crawshaw, L.I. and Hammel, H.T. (1973). Behavioral temperature regulation in the California horn shark, Heterodontus francisci. Brain Behav. Evol. 7: 447–452.Google Scholar
  24. Crawshaw, L.I, and Hammel, H.T. (1974). Behavioral regulation of internal temperature in the brown bullhead, Ictalurus nebulosus. Comp. Biochem. Physiol. 47A: 51–60.CrossRefGoogle Scholar
  25. Dean, J.M. (1976). Temperatures of tissues in freshwater fishes. Trans. Am. Fish. Soc. 105: 709–711.CrossRefGoogle Scholar
  26. DeVlaming, V.L. (1971). Thermal selection behavior in the estuarine goby Gillichthys mirabilis Cooper. J. Fish. Biol. 3: 277–286.CrossRefGoogle Scholar
  27. DeWitt, C.B. and Friedman, R.M, (1979). Significance of skewness in ectotherm thermoregulation. Am. Zool. 19: 195–209.Google Scholar
  28. Dizon, A.E. and Brill, R.W. (1979). Thermoregulation in tunas. Am. Zool. 19: 249–265.Google Scholar
  29. Ellgaard, E.G., Bloom, K.S., Malizia, A.A. Jr. and Gunning, G.E. (1975). The locomotor activity of fish: an anology to the kinetics of an opposed first-order chemical reaction. Trans. Am. Fish. Soc. 104: 752–754.CrossRefGoogle Scholar
  30. Erskine, D.J. and Spotila, J.R. (1977). Heat-energy-budget analysis and heat transfer in the largemouth blackbass (Micropterus salmoides). Physiol. Zool. 50: 157–169.Google Scholar
  31. Feldmeth, C.R., Stone, E.A. and Brown, J.H. (1974). An increased scope for thermal tolerance upon acclimating pupfish (Cyprinodon) to cycling temperatures. J. Comp. Physiol. 89: 39–44.CrossRefGoogle Scholar
  32. Ferguson, R.G. (1958). The preferred temperatures of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Board Can. 15: 607–624.CrossRefGoogle Scholar
  33. Fraenkel, G.S. and Gunn, D.L. (1961). The Orientation of Animals. New York, Dover. 376 p.Google Scholar
  34. Frank, L.H. (1971). A technique for measuring thermoregulatory behavior in the fish. Behav. Res. Meth. Instrum. 3: 250.CrossRefGoogle Scholar
  35. Fry, F.E.J. (1947). Effects of the environment on animal activity. Univ. Toronto Stud. Biol. Ser. 55. Publ. Ontario Fish. Res. Lab. 68: 1–62.Google Scholar
  36. Fry, F.E.J. (1958a). The experimental study of behavior in fish. Proc. Indo-Pac. Fish. Counc. 3: 37–42.Google Scholar
  37. Fry, F.E.J. (1958b). Temperature compensation. Ann. Rev. Physiol. 20: 207–224.CrossRefGoogle Scholar
  38. Fry, F.E.J. (1964). Animals in aquatic environments: fishes. In: Handbook of physiology. Ed. D.B. Dill, E.F. Adolph and G.C. Wilber. Washington, D.C., Am. Physiol. Soc, p. 715–728.Google Scholar
  39. Garside, E.T. and Tait, J.S. (1958). Preferred temperature of rainbow trout and its unusual relationship to acclimation temperature. Can. J. Zool. 36: 563–567.CrossRefGoogle Scholar
  40. Goddard, CI. and Tait, J.S. (1976). Preferred temperatures of F3 to F5 hybrids of Salvelinus fontinalis x S. namaycush. J. Fish. Res. Boara Can. 33: 197–202.CrossRefGoogle Scholar
  41. Green, M.D. and Lomax, P. (1976). Behavioural thermoregulation and neuroamines in fish (Chromus chromus). J. Thermal Biol. 1: 237–240.CrossRefGoogle Scholar
  42. Hall, L.W. Jr., Hocutt, C.H. and Stauffer, J.R. Jr. (1978). Implication of geographic location on temperature preference of white perch, Morone americana. J. Fish. Res. Board Can. 35: 1464–1468.CrossRefGoogle Scholar
  43. Hammel, H.T., Crawshaw, L.I. and Cabanac, H.P. (1973). The activation of behavioral responses in the regulation of body temperature in vertebrates. In: The Pharmacology of Thermoregulation. Ed. 5, 4, p.Google Scholar
  44. Hammel, H.T., Stromme, S.B. and Myhre, K. (1969). Forebrain temperature activates behavioral thermoregulatory response in arctic sculpins. Science 165: 83–85.CrossRefGoogle Scholar
  45. Heath, W.G. (1963). Thermoperiodism in sea-run cutthroat trout (Salmo clarki clarki). Science 142: 486–488.CrossRefGoogle Scholar
  46. Hokanson, K.E.F., Kleiner, C.F. and Thorslund, T.W. (1977). Effects of constant temperatures and diel temperature fluctuations on specific growth and mortality rates and yield of juvenile rainbow trout, Salmo gairdneri. J. Fish. Res. Board Can. 34: 639–648.CrossRefGoogle Scholar
  47. Holland, W.E., Smith, M.H., Gibbons, J.W. and Brown, D.H. (1974). Thermal tolerances of fish from a reservoir receiving effluent from a nuclear reactor. Physiol. Zool. 47: 110–118.Google Scholar
  48. Horning, W.B. II and Pearson, R.E. (1973). Growth temperature requirements and lower lethal temperatures for juvenile smallmouth bass (Micropterus dolomieui). J. Fish. Res. Board Can. 30: 1226–1230.CrossRefGoogle Scholar
  49. Hulbert, A.J. (1978). The thyroid hormones; a thesis concerning their action. J. Theor. Biol. 73: 81–100.CrossRefGoogle Scholar
  50. Hutchison, V.H. and Maness, J.D. (1979). The role of behavior in temperature acclimation and tolerance in ectotherms. Am. Zool. 19: 367–384.Google Scholar
  51. Javaid, M.Y. and Anderson, J.M. (1967). Thermal acclimation and temperature selection in Atlantic salmon, Salmo salar, and rainbow trout, S. gairdneri. J. Fish. Res. Board Can. 24: 1507–1513.CrossRefGoogle Scholar
  52. Johnson, M.S. (1977). Association of allozymes and temperature in the crested blenny Anoplarchus purpurescens. Marine Biol. 41: 147–152.CrossRefGoogle Scholar
  53. Kluger, M.J. (1979). Fever in ectotherms: evolutionary implications. Am. Zool. 19: 295–304.Google Scholar
  54. Kuz’mina, V.V. and Morozova, E.N. (1977). Effects of temperature on amylase activity of freshwater bony fishes. Vopr. Ikhtiol. 17: 922–929.Google Scholar
  55. Kwain, W. and McCauley, R.W. (1978). Effects of age and overhead illumination on temperatures preferred by underyearling rainbow trout, Salmo gairdneri, in a vertical temperature gradient. J. Fish. Res. Board Can. 35: 1430–1433.CrossRefGoogle Scholar
  56. Lemons, D.E. and Crawshaw, L.I. (1978). Temperature regulation in the Pacific lamprey (Lampetra tridentata). Fed. Proc. 37: 929.Google Scholar
  57. Lowe, C.H. and Heath, W.G. (1969). Behavioral and physiological responses to temperature in the desert pupfish (Cyprinodon macularius). Physiol. Zool. 42: 53–59.Google Scholar
  58. Matthews, W.J. and Hill, L.G. (1979). Influence of physico-chemical factors on habitat selection by red shiners, Notropis lutrensis (Pisces: Cyprinidae). Copeia 1979: 70–81.CrossRefGoogle Scholar
  59. McCauley, R.W., Elliott, J.R. and Read, L.A.A. (1977). Influence of acclimation temperature on preferred temperature in the rainbow trout Salmo gairdneri. Trans. Am. Fish. Soc. 106: 362–365.CrossRefGoogle Scholar
  60. McCauley, R.W. and Huggins, N. (1976). Behavioral thermal regulation by rainbow trout in a temperature gradient. In: Thermal Ecology II. Ed. G.W. Esch and R.W. McFarlane. Springfield, Va., Technical Information Service, p. 171–175.Google Scholar
  61. McCauley, R.W. and Huggins, N. (1979). Ontogenetic and non-thermal seasonal effects on thermal preferenda of fish. Am. Zool. 19: 267–271.Google Scholar
  62. McCauley, R.W. and Pond, W.L. (1971). Temperature selection of rainbow trout fingerlings in vertical and horizontal gradients. J. Fish. Res. Board Can. 28: 1801–1804.CrossRefGoogle Scholar
  63. McCauley, R.W., Reynolds, W.W. and Huggins, N. (1977). Photokinesis and behavioral thermoregulation in adult sea lampreys (Petromyzon marinus). J. Exp. Zool. 202: 431–437.CrossRefGoogle Scholar
  64. Meldrim, J.W. and Gift, J.J. (1971). Temperature preference, avoidance and shock experiments with estuarine fishes. Ichthyol. Assoc. Bull. 7: 1–76.Google Scholar
  65. Mueller, R. (1976). Investigations on the body temperature of freshwater fishes. Arch. Fischereiwiss. 27: 1–28.Google Scholar
  66. Neill, W.H. (1979). Mechanisms of fish distribution in heterothermal environments. Am. Zool. 19: 305–317.Google Scholar
  67. Niemierko, S., Kramska, J.S., Mleczko, M. and Suszczewski, S.R. (1977). The effect of the assay temperature on brain acetylcholinesterase activity of two Antarctic fish species. Bull. Acad. Pol. Sci. Biol. 25: 821–826.Google Scholar
  68. Otto, R.G. (1974). The effects of acclimation to cyclic thermal regimes on heat tolerance of the western mosquitofish. Trans. Am. Fish. Soc. 103: 331–335.CrossRefGoogle Scholar
  69. Peterson, R.H. and Anderson, J.M. (1969). Influence of temperature change on spontaneous locomotor activity and oxygen consumption of Atlantic salmon, Salmo salar, acclimated to two temperatures. J. Fish. Res. Board Can. 26: 93–109.CrossRefGoogle Scholar
  70. Power, M.E. and Todd, J.H. (1976). Effects of increasing temperature on social behavior in territorial groups of pumpkinseed sunfish, Lepomis gibbosus. Environm. Pollut. 10: 217–223.CrossRefGoogle Scholar
  71. Rahmann, H. (1978). Gangliosides and thermal adaptation in vertebrates. Jap. J. Exp. Med. 48: 85–96.Google Scholar
  72. Reutter, J.M. and Herdendorf, C.E. (1974). Laboratory estimates of the seasonal final temperature preferenda of some Lake Erie fish. Proc. Conf. Great Lakes Res. 17: 59–67.Google Scholar
  73. Reynolds, W.W. (1975). Laboratory Manual for Man, Nature and Society. Dubuque, Iowa, Wm. C. Brown Co., 253 p.Google Scholar
  74. Reynolds, W.W. (1977a). Thermal equilibration rates in relation to heartbeat and ventilatory frequencies in largemouth blackbass, Micropterus salmoides. Comp. Biochem. Physiol. 56A: 195–201.CrossRefGoogle Scholar
  75. Reynolds, W.W. (1977b). Temperature as a proximate factor in orientation behavior. J. Fish. Res. Board Can. 34: 734–739.CrossRefGoogle Scholar
  76. Reynolds, W.W. (1977c). Fever and antipyresis in the bluegill sunfish, Lepomis macrochirus. Comp .Biochem. Physiol. 57C: 165–167.Google Scholar
  77. Reynolds, W.W. (1977d). Circadian rhythms in the goldfish Carassius auratus L.: preliminary observations and possible implications. Rev. Can. Biol. 36: 355–356.Google Scholar
  78. Reynolds, W.W. (1977e). Fish orientation behavior: an electronic device for studying simultaneous responses to two variables. J. Fish. Res. Board Can. 34: 300–304.CrossRefGoogle Scholar
  79. Reynolds, W.W. (1978). The final thermal preferendum of fishes: shuttling behavior and acclimation overshoot. Hydrobiologia 57: 123–124.CrossRefGoogle Scholar
  80. Reynolds, W.W. (1979). Perspective and introduction to the symposium: Thermoregulation in ectotherms. Amer. Zool. 19: 193–194.Google Scholar
  81. Reynolds, W.W. and Casterlin, M.E. (1976a). Thermal preferenda and behavioral thermoregulation in three centrarchid fishes. In: Thermal Ecology II. Ed. G.W. Esch and R.W. McFarlane. Sprinfield, Va., Technical Information Service, p. 185–190.Google Scholar
  82. Reynolds, W.W. and Casterlin, M.E. (1976b). Locomotor activity rhythms in the bluegill sunfish, Lepomis macrochirus. Am. Midl. Nat. 96: 221–225.CrossRefGoogle Scholar
  83. Reynolds, W.W. and Casterlin, M.E. (1978a). Estimation of cardiac output and stroke volume from thermal equilibration and heartbeat rates in fish. Hydrobiologia 57: 49–52.CrossRefGoogle Scholar
  84. Reynolds, W.W. and Casterlin, M.E. (1978b). Thermoregulatory behavior in the smooth dogfish shark, Mustelus cards. Fed. Proc. 37: 427.Google Scholar
  85. Reynolds, W.W. and Casterlin, M.E. (1978c). Behavioral thermoregulation by ammocoete larvae of the sea lamprey (Petromyzon marinus) in an electronic shuttlebox. Hydrobiologia 61: 145–147.CrossRefGoogle Scholar
  86. Reynolds, W.W. and Casterlin, M.E. (1978d). Ontogenetic change in preferred temperature and diel activity of the yellow bullhead, Ictalurus natalis. Comp. Biochem. Physiol. 59A: 409–411.CrossRefGoogle Scholar
  87. Reynolds, W.W. and Casterlin, M.E. (1978e). Complementarity of thermoregulatory rhythms in Micropterus salmoides in M. dolomieui. Hydrobiologia 60: 263–264.CrossRefGoogle Scholar
  88. Reynolds, W.W. and Casterlin, M.E. (1979a). Behavioral thermoregulation and the “final preferendum” paradigm. Am. Zool. 19: 211–224.Google Scholar
  89. Reynolds, W.W. and Casterlin, M.E. (1979b). Thermoregulatory rhythm in juvenile muskellunge (Esox masquinongy): evidence of a diel shift in the lower set-point. Comp. Biochem. Physiol. 63A: 523–525.CrossRefGoogle Scholar
  90. Reynolds, W.W. and Casterlin, M.E. (1979c). Thermoregulatory behavior of brown trout, Salmo trutta. Hydrobiologia 62: 79–80.CrossRefGoogle Scholar
  91. Reynolds, W.W. and Casterlin, M.E. (1979d). Effect of temperature on locomotor activity in the goldfish (Carassius auratus) and the bluegill (Lepomis macrochirus): presence of an “activity well” in the region of the final preferendum. Hydrobiologia 63: 3–5.CrossRefGoogle Scholar
  92. Reynolds, W.W. and Casterlin, M.E. (1979e). Behavioral thermoregulation and locomotor activity in the lobster Homarus americanus. Comp. Biochem. Physiol. 64A: 25–28.CrossRefGoogle Scholar
  93. Reynolds, W.W. and Casterlin, M.E. (1979f). Behavioral thermoregulation and locomotor activity of Perca flavescens. Can. J. Zool. 57: 2239–2242.CrossRefGoogle Scholar
  94. Reynolds, W.W. and Casterlin, M.E. (1980). The pyrogenic responses of non-mammalian vertebrates. In: Handbook of Experimental Pharmacology. Pyretics and Antipyretics. Ed. A.S. Milton. Berlin, Springer-Verlag, Chapter XIX.Google Scholar
  95. Reynolds, W.W. and Casterlin, M.E. (in press). Thermoregulatory behavior of a tropical reef fish: Zebrasoma flavescens. Oikos 34: in press.Google Scholar
  96. Reynolds, W.W., Casterlin, M.E. and Covert, J.B. (1976). Behavioural fever in teleost fishes. Nature (Lond.) 259: 41–42.CrossRefGoogle Scholar
  97. Reynolds, W.W., Casterlin, M.E. and Covert, J.B. (1978). Febrile responses of bluegill (Lepomis macrochirus) to bacterial pyrogens. J. Thermal Biol. 3: 129–130.CrossRefGoogle Scholar
  98. Reynolds, W.W., Casterlin, M.E., Matthey, J.K., Millington, S.T. and Ostrowski, A.C. (1978). Diel patterns of preferred temperature and locomotor activity in the goldfish Carassius auratus. Comp. Biochem. Physiol. 59A: 225–227.CrossRefGoogle Scholar
  99. Reynolds, W.W., Casterlin, M.E. and Millington, S.T. (1978). Circadian rhythm of preferred temperature in the bowfin Amia calva, a primitive holostean fish. Comp. Biochem. Physiol. 60A: 107–109.CrossRefGoogle Scholar
  100. Reynolds, W.W., Covert, J.B. and Casterlin, M.E. (1978). Febrile responses of goldfish (Carassius auratus) to Aeromonas hydrophila and to Escherichia coli endotoxin. J. Fish Diseases 1: 271–273.CrossRefGoogle Scholar
  101. Reynolds, W.W., McCauley, R.W., Casterlin, M.E. and Crawshaw, L.I. (1976). Body temperatures of behaviorally thermoregulating large-mouth blackbass (Micropterus salmoides). Comp. Biochem. Physiol. 54A: 461–463.CrossRefGoogle Scholar
  102. Reynolds, W.W. and Thomson, D.A. (1974a). Responses of young Gulf grunion, Leuresthes sardina, to gradients of temperature, light, turbulence and oxygen. Copeia 1974: 747–758.CrossRefGoogle Scholar
  103. Reynolds, W.W. and Thomson, D.A. (1974b). Temperature and salinity tolerances of young Gulf grunion, Leuresthes sardina (Atheriniformes: Atherinidae). J. Marine Res. 32: 37–45.Google Scholar
  104. Reynolds, W.W., Thomson, D.A. and Casterlin, M.E. (1976). Temperature and salinity tolerances of larval Californian grunion, Leuresthes tenuis (Ayres): a comparison with Gulf grunion, L. sardina (Jenkins &; Evermann). J. Exp. Mar. Biol. Ecol. 24: 73–82.CrossRefGoogle Scholar
  105. Reynolds, W.W., Thomson, D.A. and Casterlin, M.E. (1977). Responses of young California grunion, Leuresthes tenuis, to gradients of temperature and light. Copeia 1977: 144–149.CrossRefGoogle Scholar
  106. Richards, F.P. and Ibara, R.M. (1978). The preferred temperatures of the brown bullhead, Ictalurus nebulosus, with reference to its orientation to the discharge canal of a nuclear power plant. Trans. Am. Fish. Soc. 107: 288–294.CrossRefGoogle Scholar
  107. Richards, F.P., Reynolds, W.W., McCauley, R.W., Crawshaw, L.I., Coutant, C.C. and Gift, J.J. (1977). Temperature preference studies in environmental impact assessments: an overview with procedural recommendations. J. Fish. Res. Board Can. 34: 728–761.CrossRefGoogle Scholar
  108. Rigby, B.J. (1977). Thermal transitions in the collagenous tissues of Poikilothermic animals. J. Thermal Biol. 2: 89–93.CrossRefGoogle Scholar
  109. Rozin, P.N. and Mayer, J. (1961). Thermal reinforcement and thermoregulatory behavior in the goldfish, Carassius auratus. Science 134: 942–943.CrossRefGoogle Scholar
  110. Shaklee, J.B., Christiansen, J.A., Sidell, B.D., Prosser, C.L. and Whitt, G.S. (1977). Molecular aspects of temperature acclimation in fish: contributions of changes in enzyme activities and isozyme patterns to metabolic reorganization in the green sunfish. J. Exp. Zool. 201: 1–20.CrossRefGoogle Scholar
  111. Simpson, G.G., Roe, A. and Lewontin, R.C. (1960). Quantitative Zoology. New York, Harcourt Brace and World, 440 p.Google Scholar
  112. Somero, G.N. (1978). Temperature adaptation of enzymes: biological optimization through structure-function compromises. Ann. Rev. Ecol. Syst. 9: 1–29.CrossRefGoogle Scholar
  113. Spieler, R.E., Noeske, T.A., DeVlaming, V. and Meier, A.H. (1977a). Effects of thermocycles on body weight gain and gonadal growth in the goldfish, Carassius auratus. Trans. Am. Fish. Soc. 106: 440–444.CrossRefGoogle Scholar
  114. Spieler, R.E., Noeske, T.A. and Seegert, G.L. (1977b). Diel variations in sensitivity of fishes to potentially lethal stimuli. Progr. Fish-Cult. 39: 144–147.CrossRefGoogle Scholar
  115. Stauffer, J.R. Jr., Dickson, K.L., Cairns, J. Jr. and Cherry, D.S. (1976). The potential and realized influences of temperature on the distribution of fishes in the New River, Glen Lyn, Virginia, Wildl. Monogr. 50: 1–40.Google Scholar
  116. Stevens, E.D. and Fry, F.E.J. (1970). The rate of thermal exchange in a teleost, Tilapia mossambica. Can. J. Zool. 48: 221–226.CrossRefGoogle Scholar
  117. Stevens, E.D. and Fry, F.E.J. (1974). Heat transfer and body temperatures in non-thermoregulatory teleosts. Can. J. Zool. 52: 1137–1145.CrossRefGoogle Scholar
  118. Vitvitskii, V.N. (1977). A comparative analysis of heat stability and electrophoretic migration of muscle proteins of fishes living at different depths. Ekologiya 6: 88–92.Google Scholar
  119. Ward, J.V. (1976). Effects of thermal constancy and seasonal temperature displacement on community structure of stream macroinvertebrates. In: Thermal Ecology II. Eds. G.W. Esch and R.W. McFarlane. Springfield, Va., Technical Information Service, p. 302–307.Google Scholar
  120. Winkler, P. (1979). Thermal preference of Gambusia affinis affinis as determined under field and laboratory conditions. Copeia 1979: 60–64.CrossRefGoogle Scholar
  121. Withers, P.C. (1978). Acid-base regulation as a function of body temperature in ectothermic toads, a heliothermic lizard and a heterothermic mammal. J. Thermal. Biol. 3: 163–172.CrossRefGoogle Scholar
  122. Wodtke, E. (1978). Lipid adaptation in liver mitochondrial membranes of carp acclimated to different environmental temperatures: phospholipid composition, fatty acid pattern, and cholesterol content. Biochim. Biophys. Acta 529: 280–291.CrossRefGoogle Scholar
  123. Zahn, M. (1962). Die Vorzugstemperaturen zweier Cypriniden und eines Cyprinodonten und die Adaptationstypen der Vorzugstemperatur bei Fischen. Zool. Beitr., n.s., 7: 15–25.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • William W. Reynolds
    • 1
  • Martha E. Casterlin
    • 1
  1. 1.Marine Biology Program, Center for Life SciencesUniversity of New EnglandBiddefordUSA

Personalised recommendations