Allometric Considerations of the Adult Mammalian Brain, with Special Emphasis on Primates

  • Este Armstrong
Part of the Advances in Primatology book series (AIPR)


Allometric studies of the brain investigate differences in the size of the total brain or its subdivisions and associate those differences with the size of the organism or, for its parts, with the size of the brain. Two quantitative features are examined in these studies: (1) the intercepts, or how big a part is in relation to the whole, and (2) the slope, or how the two features scale together. Over the past 100 years comparisons of adult vertebrates have demonstrated that taxonomic groups differ according to the amount of brain per body weight and that brain weights do not show as much enlargement as do body weights (negative allometry). Although many studies have covered all vertebrates, only mammalian data will be discussed in this review.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allman, J. 1982. Reconstructing the evolution of the brain in primates through the use of comparative neurophysiological and neuroanatomical data, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds., pp. 13–28, Plenum Press, New York.Google Scholar
  2. Andy, O. J., and Stephan, M. 1968. The septum in the human brain. J. Comp. Neurol. 133: 388 – 409.Google Scholar
  3. Armstrong, E. 1979. A quantitative comparison of the hominoid thalamus: I. Specific sensory relay nuclei. Am. J. Phys. Anthropol. 52: 405–419.Google Scholar
  4. Armstrong, E. 1980a. A quantitative comparison of the hominoid thalamus. II. Limbic nuclei anterior principalis and lateralis dorsalis. Am. J. Phys. Anthropol. 52: 43–54.PubMedGoogle Scholar
  5. Armstrong, E. 1980b. A quantitative comparison of the hominoid thalamus. III. A motor substrate—The ventrolateral complex. Am. J. Phys. Anthropol. 52: 405–419.Google Scholar
  6. Armstrong, E. 1981. A quantitative comparison of the hominoid thalamus. IV. The pulvinar and lateral posterior complex. Am. J. Phys. Anthropol. 55: 369–383.PubMedGoogle Scholar
  7. Armstrong, E. 1982a. Mosaic evolution in the primate brain: Differences and similarities in the hominoid thalamus, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 131–161, Plenum Press, New York.Google Scholar
  8. Armstrong, E. 1982£. An analysis of brain allometry: Consideration of the cerebral metabolic demand. Am. J. Phys. Anthropol. 57: 167–168.Google Scholar
  9. Armstrong, E. 1982c. A look at relative brain size in mammals. Neurosci. Lett. 34: 101–104.PubMedGoogle Scholar
  10. Armstrong, E. 1983. Metabolism and relative brain size. Science 220: 1302–1304.PubMedGoogle Scholar
  11. Armstrong, E. and St. Onge, M. 1981. Evolution of the human anterior thalamic complex: Results of morphometric and allometric analyses. Soc. Neurosci. 7: 755.Google Scholar
  12. Baron, G. 1979. Quantitative changes in the fundamental structural pattern of the diencephalon among primates and insectivores. Folia Primatol. 31: 74–105.PubMedGoogle Scholar
  13. Bauchot, R. 1978. Encephalization in vertebrates. Brain Behav. Evol. 15: 1–18.PubMedGoogle Scholar
  14. Bauchot, R. 1982. Brain organization and taxonomic relationships in insectivora and primates, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 163 – 175, Plenum Press, New York.Google Scholar
  15. Bauchot, R., and Diagne, M. 1973. La croissance encéphalique chez Hemicentetes semispinosus (Insectivora, Tenrecidae). Mammalia 37: 468–477.Google Scholar
  16. Bauchot, R., and Stephan, H. 1966. Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30: 160–196.Google Scholar
  17. Bauchot, R., and Stephan, H. 1969. Encéphalisation et niveau évolutif chez les simiens. Mammalia 33: 225–275.Google Scholar
  18. Beckman, A. L., and Stanton, T. L. 1976. Changes in CNS responsiveness during hibernation. Am.]. Physiol. 231: 810–816.Google Scholar
  19. Bok, S. T. 1959. Histonomy of the Cerebral Cortex, Elsevier, Amsterdam.Google Scholar
  20. Bok, S. T., Kip, M. J., and Taalman, V. E. 1939. The size of the body and the size and number of the nerve cells in the cerebral cortex. Acta Neerl. Morphol. Norm. Pathol. 3: 1–22.Google Scholar
  21. Braitenberg, V. 1977. On the Texture of Brains, Springer-Verlag, New York.Google Scholar
  22. Brandt, A. 1867. Sur le rapport du poids du cerveau à celui dur corps chez différents animaux. Bull. Soc. Imp. Nat. Moscow 40: 525–543.Google Scholar
  23. Brody, S. 1945. Bioenergetics and Growth, Hafner, New York.Google Scholar
  24. Bronson, R. T. 1979. Brain weight—body weight scaling in breeds of dogs and cats. Brain Behav. Evol. 16: 227–236.PubMedGoogle Scholar
  25. Bruesch, S. R., and Arey, L. B. 1942. The number of myelinated and unmyelinated fibers in the optic nerve of vertebrates. J. Comp. Neurol.77: 631–665.Google Scholar
  26. Bruhn, J. M. 1934. The respiratory metabolism of infrahuman primates. Am. J. Physiol. 110: 477 – 484.Google Scholar
  27. Brummelkamp, R. 1939. Das sprungweise Wachstum der kernmasse. Acta Neerl. Morphol. Norm. Pathol. 2: 177–188.Google Scholar
  28. Buchweitz, E., Sinha, A. K., and Weiss, H. R. 1980. Cerebral regional oxygen consumption and supply in anesthetized cat. Science 209: 499–501.Google Scholar
  29. Campbell, C. B. G. 1982. Some questions and problems related to homology, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 1–11, Plenum Press, New York.Google Scholar
  30. Carpenter, M. B. 1976. Human Neuroanatomy, Williams and Wilkins, Baltimore.Google Scholar
  31. Carter, H. B. 1965. Variation in the hair follicle population of the mammalian skin, in: Biology of the Skin and Hair Growth (A. G. Lyne and B. F. Short, eds.), pp. 25–33, Elsevier, New York.Google Scholar
  32. Clutton-Brock, T. H., and Harvey, P. H. 1980. Primates, brains and ecology. J. Zool. (Lond.) 190: 309–323.Google Scholar
  33. Compoint-Monmignaut, C. 1973. Anatomie comparée: L’encéphalisation chez les rongeurs. C. R. Acad. Sci. Paris 277: 861–863.Google Scholar
  34. Count, E. W. 1947. Brain and body weight in man: Their antecedents in growth and evolution. Ann. N.Y. Acad. Sci. 46: 993–1122.Google Scholar
  35. Crile, G. 1941. Intelligence, Power and Personality, McGraw-Hill, New York.Google Scholar
  36. Crile, G. W., and Quiring, D. P. 1940. A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J. Sci. 40: 219–259.Google Scholar
  37. Darwin, C. 1871. The Descent of Man and Selection in Relation to Sex, Murray, London.Google Scholar
  38. Dawson, T. J., and Hulbert, A. J. 1970. Standard metabolism, body temperature and surface areas of Australian marsupials. Am. J. Physiol. 218: 1233–1238.PubMedGoogle Scholar
  39. Dhindsa, D. S., Hoversland, A. S., and Metcalfe, J. 1982. Comparative studies of the respiratory functions of mammalian blood. XII. Black galago (Galago crassicaudatus argintatus) and brown galago (Galago crassicaudatus crassicaudatus). Respir. Physiol. 47: 313–323.PubMedGoogle Scholar
  40. Diamond, I. T. 1979. The subdivision of neocortex: A proposal to revise the traditional view of sensory, motor and association areas. Prog. Psychobiol. Physiol. Psychol. 8: 81–151.Google Scholar
  41. Diemer, N. H. 1978. Glial and neuronal changes in experimental hepatic encephalopathy: A quantitative morphological investigation. Acta Neurol. Scand. 58(Suppl. 71): 1–144.Google Scholar
  42. Dubois, E. 1897. Sur le rapport du poids de l’encéphale avec la grandeur du corps chez le mammifères. Bull. Soc. Anthropol. 8: 337–376.Google Scholar
  43. Dubois, E. 1914. Die gesetzmässige Beziehung von Gehirnmasse zu Körpergrösse bei den Wirbeltieren. Z. Morphol. Anthropol. 18: 323–350.Google Scholar
  44. Duffy, T. E., and Plum, F. 1981. Seizures, coma and major metabolic encephalopathies, in: Basic Neurochemistry (G.J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 681 – 718, Little, Brown, Boston.Google Scholar
  45. Eisenberg, J. F. 1981. The Mammalian Radiations, University of Chicago Press, Chicago.Google Scholar
  46. Eisenberg, J. F., and Wilson, D. 1978. Relative brain size and feeding strategies in the Chiroptera. Evolution 32: 740–751.Google Scholar
  47. Elias, H., and Schwartz, D. 1971. Cerebrocortical surface areas, volumes, lengths of gyri and their interdependence in mammals, including man. Z. Saeugetierkd. 36: 147–163.Google Scholar
  48. Falk, D. 1980. A reanalysis of the South African Australopithecine natural endocasts. Am. J. Phys. Anthropol. 53: 525–539.PubMedGoogle Scholar
  49. Falk, D. 1981. Sulcal patterns of fossil Theropithecus baboons: Phylogenetic and functional implications. Int. J. Pnmatol. 2: 187.Google Scholar
  50. Falk, D. 1982a. Mapping fossil endocasts, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 217–226, Plenum Press, New York.Google Scholar
  51. Falk, D. 1982b. Allometry: Scaling of brain size, body surface area and body shapes in primates. Int. J. Primatol. 3: 281.Google Scholar
  52. Falk, D. 1983a. Cerebral cortices of East Asian hominids. Science 221: 1072–1074.PubMedGoogle Scholar
  53. Falk, D. 19836. The Taung endocast: A reply to Holloway. Am. J. Phys. Anthropol. 60: 479–489.PubMedGoogle Scholar
  54. Falk, D., and Waide, R. 1982. Allometry: Body shape as a key factor in brain evolution. Am. J. Phys. Anthropol. 57: 186.Google Scholar
  55. Frick, H. 1957. Betrachtungen über die Beziehungen zwischen körpergewicht und organgewicht. Z. Saugetierkd. 22: 193–207.Google Scholar
  56. Friede, R. L. 1954. Der quantitative Anteil der Glia an der Cortexentwicklung. Acta Anat. 20: 290–296.PubMedGoogle Scholar
  57. Friede, R. L. 1963. The relationship of body size, nerve cell size, axon length and glial density in the cerebellum. Proc. Natl. Acad. Sci. U.S.A. 49: 187–193.PubMedGoogle Scholar
  58. Galaburda, A. M., and Pandya, D. N. 1982. Role of architectonics and connections in the study of primate brain evolution, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 203–216, Plenum Press, New York.Google Scholar
  59. Geiger, A., and Magnes, J. 1947. The isolation of the cerebral circulation and the perfusion of the brain in the living cat. Am. J. Physiol. 149: 517–537.PubMedGoogle Scholar
  60. Ghajar, J. B. G., Plum, F., and Duffy, T. E. 1982. Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J. Neurochem. 38: 397– 409.PubMedGoogle Scholar
  61. Gilboe, D. D., and Betz, A. G. 1973. Oxygen uptake in the isolated canine brain. Am. J. Physiol. 224: 588–595.PubMedGoogle Scholar
  62. Goffart, M. 1977. Hypométabolisme chez Aotus trivirgatus. (Primates Platyrhini, Cebidae). C. R. Séances Soc. Belge. Biol. 171: 1149–1152.Google Scholar
  63. Goodman, M., Snyder, F. N., Stimson, C. W., and Rankin, J. J. 1969. Phylogenetic changes in the proportions of two kinds of lactate dehydrogenase in primate brain regions. Brain Res. 14: 447–459.PubMedGoogle Scholar
  64. Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41: 587–640.PubMedGoogle Scholar
  65. Gould, S. J. 1975. Allometry in primates, with emphasis on scaling and the evolution of the brain, in: Approaches to Primate Paleobiology (Contrib. Primatol., Vol. 5, F. Szalay, ed.), pp. 244–292, S. Karger, Basel.Google Scholar
  66. Gurche, J. A. 1982. Early primate brain evolution, in: Primate Brain Evolution: Methods and Concepts, (E. Armstrong and D. Falk, eds.), pp. 227–246, Plenum Press, New York.Google Scholar
  67. Hart, J. S. 1971. Rodents, in: Comparative Physiology of Thermoregulation (G. G. Whittow, ed.), p. 1 – 149, Academic Press, New York.Google Scholar
  68. Hart, J. S., and Irving, L. 1959. The energetics of harbor seals in air and in water with special consideration of seasonal changes. Can. J. Zool. 37: 447–57.Google Scholar
  69. Haug, H. 1972. Stereological methods in the analysis of neuronal parameters in the central nervous system. J. Microsc. 95: 165–180.PubMedGoogle Scholar
  70. Heller, H. C. 1979. Hibernation: Neural aspects. Ann. Rev. Physiol. 41: 305–321.Google Scholar
  71. Hemmer, H. 1971. Beitrag zur Erfassung der Progressiven Cephalisation bei Primaten, in: Proceedings of the 3rd International Congress of Primatology, Vol. 1 (H. Hemmer, H. Biegert, and W. Leutenegger, eds.), pp. 99–107, S. Karger, Basel.Google Scholar
  72. Herreid, C. F., and Schmidt-Nielsen, K. 1966. Oxygen consumption, temperature and water loss in bats from different environments. Am. J. Physiol. 211: 1108–1112.PubMedGoogle Scholar
  73. Herrick, C. J. 1926. Brains of Rats and Men, University of Chicago Press, Chicago.Google Scholar
  74. Hildwein, G. 1972. Métabolisme énergétique de quelques mammifères et oiseaux de la forêt équatioriale. Arch. Sci. Physiol. 26: 379–385.Google Scholar
  75. Hildwein, G., and Goffart, M. 1975. Standard metabolism and thermoregulation in a prosimian Perodicticus potto. Comp. Biochem. Physiol. 50A: 201–212.Google Scholar
  76. Hofman, M. A. 1982. Encephalization in mammals in relation to the size of the cerebral cortex. Brain Behav. Evol. 20: 24–96.Google Scholar
  77. Holloway, R. L., Jr. 1968. The evolution of the primate brain: Some aspects of quantitative relations. Brain Res. 7: 121–172.PubMedGoogle Scholar
  78. Holloway, R. L. 1972. New Australopithecine endocast SK 1585 from Swartkrans, S. Africa. Am. J. Phys. Anthropol 37: 173–186.Google Scholar
  79. Holloway, R. L., Jr. 1975. The Role of Human Social Behavior in the Evolution of the Brain (43rd James Arthur Lecture), American Museum of Natural History, New York.Google Scholar
  80. Holloway, R. L., Jr. 1979. Brain size, allometry and reorganization: Toward a synthesis, in: Development and Evolution of Brain Size: Behavioral Implications (M. E. Hahn, C. Jensen, and B. C. Dudek, eds., pp. 59–88, Academic Press, New York.Google Scholar
  81. Holloway, R. L., Jr. 1981. Revisiting the South African Taung Australopithecine endocast: The position of the lunate sulcus as determined by the stereo polotting technique. Am. J. Phys. Anthropol 56: 43–58.Google Scholar
  82. Holloway, R. L., and Post, D. G. 1982. The relativity of relative brain measure and hominid mosaic evolution, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 57–76, Plenum Press, New York.Google Scholar
  83. Hubel, D. H., and Wiesel, T. N. 1963. Shape and arrangement of columns in cat’s striate cortex. J. Physiol 165: 559–568.PubMedGoogle Scholar
  84. Hudson, J. W., and Brower, J. E. 1974. Oxygen consumption: Vertebrates, in: Biology Data Book HI (P. L. Altman and D. S. Dittimer, eds.), pp. 1613–1616, Federation of American Societies for Experimental Biology, Washington, D.C.Google Scholar
  85. Huxley, J. S. 1932. Problems of Relative Growth, Methuen, London.Google Scholar
  86. Irving, L., and Hart, J. S. 1957. The metabolism and insulation of seals as bare-skinned mammals in cold water. Can. J. Zool. 35: 497–511.Google Scholar
  87. Irving, L., Scholander, P. F., and Grinnell, S. W. 1941. The respiration of the porpoise, Tursiops truncates. J. Cell. Comp. Physiol. 17: 145–168.Google Scholar
  88. Jerison, H. J. 1955. Brain to body ratios and the evolution of intelligence. Science 121: 447–449.PubMedGoogle Scholar
  89. Jerison, H. J. 1973. Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  90. Jerison, H. J. 1979. The evolution of diversity in brain size, in: Development and Evolution of Brain Size: Behavioral Implications (M. E. Hahn, C. Jensen, and B. C. Dudek, eds.), pp. 30–57, Academic Press, New York.Google Scholar
  91. Jerison, H. J. 1982. Ailometry brain size, cortical surface and convolutedness, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 77–84, Plenum Press, New York.Google Scholar
  92. Kaas, J. H. 1978. The organization of visual cortex in primates, in: Sensory Systems of Primates (C. R. Noback, ed.), pp. 151–179, Plenum Press, New York.Google Scholar
  93. Kamau, J. M. Z., and Maloiy, G. M. D. 1981. The fasting metabolism of a small East African antelope, the dik-dik. J. Physiol. 319: 50–51p.Google Scholar
  94. Karandeeva, O. G., Matisheua, S. K., and Shapunov, V. M. 1973. Features of external respiration in the Delphinidae, in: Morphology and Ecology of Marine Mammals (K. K. Chapskii and V. E. Sokolov, eds.), pp. 196–206, Wiley, New York.Google Scholar
  95. Kay, R. F. 1975. The functional adaptations of primate molar teeth. Am. J. Phys. Anthropol. 43: 195–215.PubMedGoogle Scholar
  96. Kayser, C., and Heusner, H. 1964. Etude comparative du métabolisme énergétique dans la série animale. J. Physiol. 56: 489–524.Google Scholar
  97. Kety, S. S. 1957. The general metabolism of the brain in vivo, in: Metabolism of the Nervous System (D. Richter, ed.), pp. 221–237, Pergamon, New York.Google Scholar
  98. Kleiber, M. 1961. The Fire of Life: An Introduction to Animal Energetics, Wiley, New York.Google Scholar
  99. Kraus, C., and Pilleri, G. 1969. Quantitative Untersuchunaen über die Grosshirnrinde der Ceta- ceen, in: Investigations on Cetacea (G. Pilleri, ed.), pp. 127–150, Waldau, Berne.Google Scholar
  100. Kuschinsky, W., and Wahl, M. 1978. Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol. Rev. 58: 656–689.PubMedGoogle Scholar
  101. Lajtha, A. L., Maker, H. S., and Clarke, D. D. 1981. Metabolism and transport of carbohydrates and amino acids, in: Basic Neurochemistry (G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds., pp. 329–353, Little, Brown, Boston.Google Scholar
  102. Lapicque, L. 1912. Le poids du cerveau et la grandeur du corps. Biologica 21: 257–265.Google Scholar
  103. Leutenegger, W. 1982. Encephalization and obstetrics in primates with particular reference to human evolution, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 85–95, Plenum Press, New York.Google Scholar
  104. Lund-Andersen, H. 1979. Transport of glucose from blood to brain. Physiol. Rev. 59: 305–352.PubMedGoogle Scholar
  105. Mace, G. M., Harvey, P. H., and Clutton-Brock, T. H. 1981. Brain size and ecology in small animals. J. Zool. 193: 333–354.Google Scholar
  106. McHenry, H. M. 1975. Fossils and the mosaic nature of human evolution. Science 190: 425–431.PubMedGoogle Scholar
  107. MacMillen, R. E., and Nelson, J. E. 1969. Bioenergetics and body size in dasyurid marsupials. Am. J. Physiol. 217: 1246–1251.PubMedGoogle Scholar
  108. McNab, B. K. 1969. The economics of temperature regulation in neotropical bats. Comp. Biochem. Physiol. 31: 227–268.PubMedGoogle Scholar
  109. McNab, B. K. 1978. Energetics of arboreal folivores: Physiological problems and ecological consequences of feeding on an ubiquitous food supply, in: The Ecology of Arboreal Folivores (G. G. Montgomery, ed.), pp. 153–162, Smithsonian Institution, Washington, D.C.Google Scholar
  110. MacPhail, E. 1982. Brain and Intelligence in Vertebrates, Oxford University Press, New York.Google Scholar
  111. Mangold, R., Sokoloff, L., Conner, E., Kleinerman, J., Therman, P. G., and Kety, S. S. 1955. The effects of sleep and lack of sleep on the cerebral metabolism of normal young men. J. Clin. Invest 34: 1092–1100.PubMedGoogle Scholar
  112. Manouvrier, L. 1885. Sur l’interprétation de la quantité dans l’encéphale et dans le cerveau en particulier. Bull. Soc. Anthropol (Paris) 3: 137–323.Google Scholar
  113. Martin, R. D. 1981. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293: 57–60.PubMedGoogle Scholar
  114. Martin, R. D. 1982. Allometric approaches to the evolution of the primate nervous system, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 39–56, Plenum Press, New York.Google Scholar
  115. Milton, K., Casey, T. M., and Casey, K. K. 1979. The basal metabolism of mantled howler monkeys (Alouatta palliata). J. Mammal. 60: 373–376.Google Scholar
  116. Mink, J. W., Blumenschine, R. J., and Adams, D. B. 1981. Ratio of central nervous system to body metabolism in vertebrates: Its constancy and functional basis. Am. J. Physiol. 241: R203–R212.Google Scholar
  117. Mountcastle, V. B. 1957. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20: 408–434.PubMedGoogle Scholar
  118. Müller, E. 1975. Temperature regulation in the slow loris. Naturwissenschaften 62: 140–141.PubMedGoogle Scholar
  119. Nakayama, T., Hori, T., Nagasaka, T., Tokura, H., and Tadaki, E. 1971. Thermal and metabolic responses in the Japanese monkey at temperatures of 5–38°C. J. Appl. Physiol. 31: 332–337.PubMedGoogle Scholar
  120. Nelson, L. E., and Asling, C. W. 1962. Metabolic rate of tree-shrews (Urogale everetti). Proc. Soc. Exp. Biol. Med. 109: 602–604.PubMedGoogle Scholar
  121. Nilsson, B., and Siesjo, B. K. 1976. A method for determining blood flow and oxygen consumption in the rat brain. Acta Physiol. Scand. 96: 72–82.PubMedGoogle Scholar
  122. Ogren, M. P. 1982. The development of the primate pulvinar, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 113–129, Plenum Press, New York.Google Scholar
  123. Palkovits, M., Magyar, P., and Szentagothai, J. 1971. Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the Purkinje cells. Brain Res. 32: 1–13.PubMedGoogle Scholar
  124. Passingham, R. E. 1973. Anatomical differences between the neocortex of man and other primates. Brain Behav. Evol. 7: 337–359.PubMedGoogle Scholar
  125. Passingham, R. E. 1975. Changes in the size and organization of the brain in man and his ancestors. Brain Behav. Evol. 11: 73–90.PubMedGoogle Scholar
  126. Pilleri, G. 1959. Beitrage zur vergleichenden Morphologie des Nagetiergehirns. Acta Anat. 39(Suppl.): 1–124.Google Scholar
  127. Prlot, P., and Stephan, H. 1970. Encephalization in Chiroptera. Can.J. Zool. 48: 433–444.Google Scholar
  128. Proppe, D. W., and Gale, C. C. 1970. Endocrine thermoregulatory responses to local hypothalamic warming in unanesthetized baboons. Am. J. Physiol. 219: 202–207.PubMedGoogle Scholar
  129. Pubols, B. H., and Pubols, C. M. 1972. Neural organization of somatic sensory representation in the spider monkey. Brain Behav. Evol. 5: 342–366.PubMedGoogle Scholar
  130. Radinsky, L. 1970. The fossil evidence of prosimian brain evolution, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), pp. 209–224, Appleton-Century-Crofts, New York.Google Scholar
  131. Radinsky, L. 1974. The fossil evidence of anthropoid brain evolution. Am. J. Phys. Anthropol. 41: 15–27.Google Scholar
  132. Radinsky, L. 1975. Primate brain evolution. Am. Sci. 63: 656–663.PubMedGoogle Scholar
  133. Radinsky, L. 1977. Early primate brains: Facts and fiction. J. Hum. Evol. 6: 79–86.Google Scholar
  134. Radinsky, L. 1978. Evolution of brain size in carnivores and ungulates. Am. Nat. 112: 815 – 831.Google Scholar
  135. Radinsky, L. 1979. The Fossil Record of Primate Brain Evolution (49th James Arthur Lecture on the Evolution of the Human Brain), American Museum of Natural History, New York.Google Scholar
  136. Radinsky, L. 1981. Brain evolution in extinct South American ungulates. Brain Behav. Evol. 18: 169–187.PubMedGoogle Scholar
  137. Radinsky, L. 1982. Some cautionary notes on making inferences about relative brain size, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 29–37, Plenum Press, New York.Google Scholar
  138. Rakic, P., and Sidman, R. L. 1969. Telencephalic origin of pulvinar neurons in the fetal human brain. Z. Anat. Entwicklungsgesch. 129: 53–82.Google Scholar
  139. Rensch, B. 1960. Evolution above the Species Level, Columbia University Press, New York.Google Scholar
  140. Richman, D. P., Stewart, R. M., Hutchinson, J. W., and Caviness, V. S., Jr. 1975. Mechanical model of brain convolutional development. Science 189: 18–21.Google Scholar
  141. Risberg, J., and Ingvar, D. H. 1973. Patterns of activation in the grey matter of the dominant hemisphere during memorization and reasoning. A study of regional cerebral blood flow changes during psychological testing. Brain 96: 737–756.PubMedGoogle Scholar
  142. Rockell, A. J., Hiorns, R. W., and Powell, T. P. S. 1974. Numbers of neurons through full depth of neocortex. A. AnaL 118: 371.Google Scholar
  143. Rockell, A. J., Hiorns, R. W., and Powell, T. P. S. 1980. The basic uniformity in structure of the neocortex. Brain 103: 221–244.Google Scholar
  144. Sacher, G. A. 1970. Allometric and functional analysis of brain structure in insectivores and primates, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), pp. 245–287, Ap- pleton-Century-Crofts, New York.Google Scholar
  145. Sacher, G. A. 1982. The role of brain maturation in the evolution of the primates, in: Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds.), pp. 97–112, Plenum Press, New York.Google Scholar
  146. Sarnat, H. B., and Netsky, M. G. 1981. Evolution of the Nervous System. Oxford University Press, New York.Google Scholar
  147. Schleicher, A., Zilles, K. V., and Kretschman, H. Z. 1978. Automatische Registrierung und Auswertung eines Grauwertindex in histogischen Schnitten. Anat. Anz. 144: 413–415.Google Scholar
  148. Schmidt, C. F., Ketz, S. S., and Pennes, H. H. 1945. The gaseous metabolism of the brain of the monkey. Am. J. Physiol. 143: 33–52.Google Scholar
  149. Schmidt-Nielsen, K. 1975. Scaling in biology: The consequences of size. J. Exp. Zool. 194: 287– 308.PubMedGoogle Scholar
  150. Scholander, P. F., and Irving, L. 1941. Experimental investigations on the respiration and diving of the Florida manatee. J. Cell. Comp. Physiol. 17: 169–191.Google Scholar
  151. Scholander, P. F., Hock, R., Walters, V., Johnson, F., and Irving, L. 1950. Heat regulation in some arctic and tropical mammals. Biol. Bull. 99: 237–258.PubMedGoogle Scholar
  152. Shariff, G. A. 1953. Cell counts in the primate cerebral cortex.J. Comp. Neurol. 98: 381–400.PubMedGoogle Scholar
  153. Shepherd, G. M. 1974. The Synaptic Organization of the Brain, Oxford University Press, New York.Google Scholar
  154. Sholl, D. A. 1948. The quantitative investigation of the vertebrate brain and the applicability of allometric formulae to its study. Proc. R. Soc. B 135: 243–258.Google Scholar
  155. Siesjo, B. K. 1978. Brain Energy Metabolism, Wiley, New York.Google Scholar
  156. Slijper, E.J. 1962. Whales, Hutchinson, London.Google Scholar
  157. Snell, O. 1892. Die Abhängigkeit des Hirngewichts von dem Körpergewicht und den geistigen Fähigkeiten. Arch. Psychiatr. 23: 436–446.Google Scholar
  158. Sokoloff, L. 1973. The (14C) deoxyglucose method: Four years later. Acta Neurol. Scand. Suppl. 72: 640–649.Google Scholar
  159. Sokoloff, L. 1981. Circulation and energy metabolism of the brain, in: Basic Neurochemistry (G. T. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 471–495, Little, Brown, Boston.Google Scholar
  160. Sokoloff, L., Mangold, R., Wechsler, R. L., Kennedy, C., and Kety, S. S. 1955. The effect of mental arithmetic on cerebral circulation and metabolism. J. Clin. Invest. 34: 1101–1106.PubMedGoogle Scholar
  161. Solnitsky, O. 1945. Volumetric and reconstruction studies of the primate cerebellar nuclei. Anat. Rec. 91: 300.Google Scholar
  162. Stahl, W. R. 1967. Scaling of respiratory variables in mammals. J. Appl. Physiol. 219: 1104–1107.Google Scholar
  163. Stephan, H. 1956. Vergleichend-anatomische Untersuchungen an Insektivorengehirnen. Mor- phol. Jahrb. 97: 77–122.Google Scholar
  164. Stephan, H. 1960. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z. Wiss. Zool. 164: 143–172.Google Scholar
  165. Stephan, H. 1969. Quantitative investigations on visual structures in primate brains, in: Proceedings of the 2nd International Congress of Primatology, Vol. 3 (H. O. Hofer, ed.), pp. 34–42, S. Karger, Basel.Google Scholar
  166. Stephan, H. 1972. Evolution of primate brains: A comparative anatomical investigation, in: The Functional and Evolutionary Biology of Primates (R. Tuttle, ed.), pp. 155–174, Aldine, Chicago.Google Scholar
  167. Stephan, H. 1975. Allocortex, in: Handbuch der mikroskopischen Anatomie des Menschen: IV/9 (W. Bargmann, ed.), Springer, New York.Google Scholar
  168. Stephan, H., and Andy, O. J. 1964. Quantitative comparisons of brain structures from insectivores to primates. Am. Zool. 4: 59–74.PubMedGoogle Scholar
  169. Stephan, H., and Andy, O. J. 1970. The allocortex in primates, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), pp. 109–135, Appleton-Century-Crofts, New York.Google Scholar
  170. Stephan, H., and Andy, O.J. 1977. Quantitative comparison of the amygdala in insectivores and primates. Acta Anat. 98: 130–153.PubMedGoogle Scholar
  171. Stephan, H., Bauchot, R., and Andy, O.J. 1970. Data on size of the brain and various brain parts in insectivores and primates, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), pp. 289–297, Appleton-Century-Crofts, New York.Google Scholar
  172. Stephan, H., Frahm, and Baron, G. 1981. New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol. 35: 1–29.PubMedGoogle Scholar
  173. Straile, W. E. 1969. Encapsulated nerve end-organs in the rabbit, mouse, sheep and man.J. Comp. Neurol. 136: 317–336.PubMedGoogle Scholar
  174. Szarski, H. 1980. A functional and evolutionary interpretation of brain size in vertebrates, in: Evolutionary Biology, Vol. 12 (M. Hecht, W. Steere, and B. Wallace, eds.), pp. 149–174, Plenum Press, New York.Google Scholar
  175. Szenthagothai, J. 1978. The neuron network of the cerebral cortex: a functional interpretation. The Ferrier Lecture, 1977. Proc. Roy. Soc. Lond. B 201: 219–248.Google Scholar
  176. Tilney, F. 1928. The Brain from Ape to Man, Hoeber, New York.Google Scholar
  177. Towe, A. L. 1973. Relative numbers of pyramidal tract neurons in mammals of different sizes. Brain Behav. Evol. 7: 1 – 17.PubMedGoogle Scholar
  178. Tower, D. B. 1954. Structural and functional organization of the mammalian cerebral cortex. The correlation of neuron density with brain size. J. Comp. Neurol. 101: 14–53.Google Scholar
  179. Tower, D. B., and Young, O. M. 1973. The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of constant density of glial cells in cerebral cortices of mammalian species from mouse to whale. J. Neurochem. 20: 269–278.PubMedGoogle Scholar
  180. Townsend, R. E., Prinz, P. N., and Obrest, W. D. 1973. Human cerebral blood flow during sleep and waking. J. Appl. Physiol. 35: 620–625.PubMedGoogle Scholar
  181. Von Bonin, G. 1937. Brain-weight and body-weight of mammals. J. Gen. Psychol. 16: 379–389.Google Scholar
  182. Von Lierse, W. 1963. Die Kapillarlichte im Wirbeltiergehirn. Acta Anat. 54: 1–31.PubMedGoogle Scholar
  183. Von Rohrs, M. 1966. Vergleichende Untersuchungen zur Evolution der Gehirne von Edentaten. I. Hirngewicht-Körpergewicht. Z. Zool. Syst. Evolutionsforsch. 4: 196–207.Google Scholar
  184. Walker, J. M., Glotzbach, S. F., Berger, R. J., and Heller, H. C. 1977. Sleep and hibernation in ground squirrels (Citellus spp.): Electrophysological observations. Am. J. Physiol. 233: R213 – 21.Google Scholar
  185. Weibel, E. R. 1979. Stereological Methods, Vol. 1, Academic Press, New York.Google Scholar
  186. Weibel, E. R., Taylor, C. R., Gehr, P., Hoppeler, H., Mathiew, O., and Maloiy, G. M. O. 1981. Design of the mammalian respiratory system. Respir. Physiol. 44: 151–164.PubMedGoogle Scholar
  187. Welker, W. I. 1973. Principles of organization of the ventrobasal complex in mammals. Brain Behavior. Evol. 7: 253–336.Google Scholar
  188. Welker, W. I. 1976. Brain evolution in mammals: A review of concepts, problems and methods, in: Evolution of Brain and Behavior in Vertebrates (B. Masterton, M. E. Bitterman, C. B. G. Campbell, and N. Hotton, eds.), pp. 251–344, Lawrence Erlbaum, Hillsdale, New Jersey.Google Scholar
  189. West, M. J. 1981. The constant number of granule cells per unit surface area of the fascia dentatae of three different species. Soc. Neurosci. 7: 465.Google Scholar
  190. West, M. J., and Andersen, A. H. 1980. An allometric study of the area dentata in the rat and mouse. Brain Res. Rev. 2: 317–348.Google Scholar
  191. Zilles, K., and Schleicher, A. 1980. Similarities and differences in the cortical areal patterns of Galago demidovii (E. Geoffroy, 1796), (Lorisidae, primates) and Microcebus murinus (E. Geoffroy, 1828), (Lemuridae, primates). Folia Primatol. 33: 161–171.PubMedGoogle Scholar
  192. Zilles, K., Schleicher, A., and Kretschmann, H.J. 1978. A quantitative approach to cytoarchitec- tonics. I. The areal pattern of the cortex of Tupaia belangen. Anat. Embryol. 153: 195–212.Google Scholar
  193. Zilles, K., Stephan, H., and Schleicher, A. 1982. Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species, in: Primate Brain Evolution: Methods and Concepts, (E. Armstrong and D. Falk, eds.), pp. 177–201, Plenum Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Este Armstrong
    • 1
  1. 1.Department of AnatomyLouisiana State University Medical CenterNew OrleansLouisiana

Personalised recommendations