Mechanisms of Neutrophil and Macrophage Motility

  • Francesco Di Virgilio
  • Paola Pizzo
  • Enzo Picello
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 297)


Physiological responses of neutrophils and macrophages are crucially dependent on their motility as they undergo random or directed locomotion, pinocytosis, phagocytosis and exocytosis (granule movement). Each of these functions requires complex interactions between surface receptors, the cytoskeleton and the plasma membrane (Silverstein et al., 1977).


Actin Filament Human Neutrophil Actin Monomer Actin Assembly Acetoxymethyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. J., Pollard, T.D., 1989. Binding of myosin I to membrane lipids. Nature (London) 340:565.PubMedCrossRefGoogle Scholar
  2. Brundage, R.A., Fay, F.S., 1989. The role of Ca2+ in the polarization and Chemotaxis of newt eosinophils. J. Cell Biol. 107:17a (abstract).Google Scholar
  3. Bengtsson, T., Rundquist, I., Stendahl, O., Wymann, M., Andersson, T., 1988. Increased breakdown of phosphatidyl-inositol 4,5-bisphosphate is not an initiating factor for actin assembly in human neutrophils. J. Cell Biol. 263:17385.Google Scholar
  4. Campbell, A.K., Hallet, M.B., 1983. Measurement of intracellular calcium ions and oxygen radicals in polymorphonuclear leukocyte-erythrocyte ghost hybrids. J. Physiol. (London) 338:537.Google Scholar
  5. Carson, M., Weber, A, Zigmond, S.H., 1986. An actin-nucleating activity in polymorphonuclear leukocytes is modulated by chemotactic peptides. J. Cell Biol. 103:2707.PubMedCrossRefGoogle Scholar
  6. Delia Bianca, V., Grzeskowiak, M., Rossi, F., 1990. Studies of molecular regulation of phagocytosis and activation of NADPH oxidase in neutrophils. IgG and C3b-mediated ingestion and associated respiratory burst independent of phosphatidyl turnover and Ca2+ transients. J. Immunol. in press.Google Scholar
  7. De Lozanne, A., Spudich, J.A., 1987. Disruption of the Dicty-ostelium myosin heavy chain gene by homologous recombination. Science 236:1086.PubMedCrossRefGoogle Scholar
  8. Di Virgilio, F., Lew, D.P., Pozzan, T., 1984. Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytoslic Ca2+ levels. Nature (London) 310:691.PubMedCrossRefGoogle Scholar
  9. Di Virgilio, F., Meyer, B.C., Greenberg, S., Silverstein, S.C., 1988a. Fc-receptor-mediated phagocytosis occurs in macrophages at exceedingly low cytosolic Ca2+ levels. J. Cell Biol. 106:657.PubMedCrossRefGoogle Scholar
  10. Di Virgilio, F., Steinberg, T.H., Swanson, J.A., Silverstein, S.C., 1988b. Fura-2 secretion and sequestration in macrophages. A blocker of organic anion transport reveals that these processes occur via a membrane transport system for organic anions. J. Immunol. 140:915.PubMedGoogle Scholar
  11. Di Virgilio, F., Fasolato, C., Steinberg, T.H., 1988c. Inhibitors of membrane transport system for organic anions block fura-2 excretion from PC12 and N2A cells. Biochem. J. 256:959.PubMedGoogle Scholar
  12. Di Virgilio, F. Stendahl, O., Pittet, D., Lew D.P., Pozzan, T., 1990. Cytoplasmic calcium in phagocyte activation. Current Topics in Membranes and Transport 3 5 (in press).Google Scholar
  13. Fukui, Y., Lynch, T.J., Brzeska, H., Korn, E.D., 1989. Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature (London) 341:328.PubMedCrossRefGoogle Scholar
  14. Griffin, F.M., Jr., Griffin, J.A., Silverstein, S.C., 1976. Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J. Exp. Med. 144:788.PubMedCrossRefGoogle Scholar
  15. Jaconi, M.E.E., Rivest, R.W., Schlegel, W., Wollheim, C.B., Pittet, D., Lew, P.D., 1988. Spontaneous and chemoattractant-induced oscillations of cytosolic free Ca2+ in single adherent human neutrophils. J. Biol. Chem. 263:10557.PubMedGoogle Scholar
  16. Janmey, P.A., Stossel, T.P., 1987. Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature (London) 325:362.PubMedCrossRefGoogle Scholar
  17. Knecht, D.A., Loomis, W.F., 1987. Antisense RNA inactivation of myosin heavy chain gene expression in Dictyodtelium Discoideum. Science 236:1081.PubMedCrossRefGoogle Scholar
  18. Kruskal, B.A., Maxfield, F.R., 1987. Cytosolic free calcium increases before and oscillates during frustrated phagocytosis in macrophages. J. Cell Biol. 105:2 685.Google Scholar
  19. Lassing, I., Lindberg, U., 1985. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature (London) 314:472.PubMedCrossRefGoogle Scholar
  20. Lew, P.D., Andersson, T., Di Virgilio, F., Pozzan, T., Stendahl, O., 1985. Ca2+-independent phagocytosis in human neutrophils. Nature (London) 315:509.PubMedCrossRefGoogle Scholar
  21. Lew, P.D., Monod, A., Krause, K.H., Waldvogel, F.A., Biden, T.J., Schlegel, W., 1986. The role of cytosolic calcium in the generation of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in HL60 cells: differential effects of chemotactic peptide receptor stimulation at distinct Ca2+ levels. J. Biol. Chem. 261:13121.PubMedGoogle Scholar
  22. McNeil, P.L., Murphy, R.F., Lanni, F., Taylor, D.L., 1984. A method for incorporating macromolecules into adherent cells. J. Cell Biol. 98:1556.PubMedCrossRefGoogle Scholar
  23. McNeil, P.L. Swanson, J.A., Wright, S.D., Silverstein, S.C., Taylor, D.L., 1986. Fc-receptor-mediated phagocytosis occurs in macrophages without an increase in average (Ca2+)i. J. Cell Biol. 102:1586.Google Scholar
  24. Meshulam, T., Proto, P., Diamond, R.D., Melnick, D.A., 1986. Calcium modulation and chemotactic response: divergent stimulation of neutrophil Chemotaxis and cytosolic calcium response by the chemotactic peptide receptor. J. Immunol. 137:1954.PubMedGoogle Scholar
  25. Pozzan, T., Lew, D.P., Wollheim, C.B., Tsien, R.Y., 1983. Is cytosolic ionized calcium regulating neutrophil activation? Science 221:1413.PubMedCrossRefGoogle Scholar
  26. Rossi, F., Delia Bianca, V., Grzeskowiak, M., Bazzoni, F., 1989. Studies on molecular regulation of phagocytosis in neutrophils. Con A-mediated ingestion and associated respiratory burst independent of phosphoinositide turnover, rise in (Ca2+)i and arachidonic acid release. J. Immunol. 142:1625.Google Scholar
  27. Sawyer, D.W., Sullivan, J.A., Mandell, G.L., 1985. Intracellular free calcium localization in neutrophils during phagoytosis. Science 230:663.PubMedCrossRefGoogle Scholar
  28. Sha’afi, R.I., Shefcyk, J., Yassin, R., Molski, T.F.P., Volpi, M., Naccache, P.H., White, J.R., Feinstein, M.B., Becker, E.L., 1986. Is a rise in intracellular concentration of free calcium necessary or sufficient for stimulated cytoskeletal-associated actin. J. Cell Biol. 102:1459.PubMedCrossRefGoogle Scholar
  29. Sheterline, P. Rickard, J.E., Richards, R.C., 1984. Fc-receptor-directed phagocytic stimuli induce transient actin assembly at an early stage of phagocytosis in neutrophil leukocytes. Eur. J. Cell Biol. 34:80.PubMedGoogle Scholar
  30. Sheterline, P., Rickard, J.E., Boothroyd, B., Richards, R.C., 1986. Phorbol esters induce rapid actin assembly in neutrophil leukocytes independently of changes in (Ca2+)i and pHi. J. Muscle Res. Cell Motil. 7:405.PubMedCrossRefGoogle Scholar
  31. Sklar, L.A., Omann, G.M., Painter, R.G., 1985. Relationship of actin polymerization and depolymerization to light scattering in human neutrophils: dependence on receptor occupancy and intracellular Ca2+. J. Cell Biol. 102:1459.Google Scholar
  32. Silverstein, S.C., Steinmann, R.M., Cohn, Z.A., 1977. En-docytosis. Annu. Rev. Biochem. 46:669.PubMedCrossRefGoogle Scholar
  33. Silverstein, S.C., Greenberg, S., Di Virgilio, F., Steinberg, T.H., 1989. Phagocytosis, in “Fundamental Immunology”, W. Paul ed. Raven Press, New York.Google Scholar
  34. Steinberg, T.H., Newman, A., Swanson, J.A., Silverstein, S.C., 1987. ATP4- permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J. Biol. Chem. 262:8884.PubMedGoogle Scholar
  35. Stossel, T.P., 1988. The mechanical responses of withe blood cells. in “Inflammation: Basic Principles and Clinical Correlates”. Gallin, J.I., Goldstein, I.M. and Snydermann R, eds. Raven Press, Ltd. New York.Google Scholar
  36. Tiffert, T., Garcia-Sancho, J., Lew, V.L., 1984. Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells. Biochim. Biophys. Acta. 773:143.PubMedCrossRefGoogle Scholar
  37. Trotter, J.A., Adelstein, R.S., 1979. Macrophage myosin: regulation of actin-activated ATPase activity by phosphorylation of the 20,000-dalton light chain. J. Biol. Chem. 260:8781.Google Scholar
  38. Volpe, P., Krause, K.H., Hashimoto, S., Zorzato, F., Pozzan T., Meldolesi, J., Lew, D.P., 1988. Calciosome, a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of non-muscle cells. Proc. Natl. Acad. Sci. USA 85:1091.PubMedCrossRefGoogle Scholar
  39. Wang, E., Michl, J., Pfeffer, L.M., Silverstein, S.C., 1984. Interferon suppresses pinocytosis but stimulates phagocytes in mouse peritoneal macrophages: related changes in cytoskeletal organization. J. Cell Biol. 98:1328.PubMedCrossRefGoogle Scholar
  40. Wood, D.S., Zollman, J.R., Reuben, J.P, Brandt, P.W., 1975. Human skeletal muscle: properties of the chemically skinned fiber. Science 187:1075.PubMedCrossRefGoogle Scholar
  41. Wuestenhube, L.J., Luna, E.J., 1987. F-actin binds to the cytoplasmatic surface of ponticulin, a 17-kDa integral glycoprotein from Dictyostelium discoideum plasma membranes. J. Cell Biol. 105:1741.CrossRefGoogle Scholar
  42. Young, J.D.-E., Ko, S.S., Cohn, Z.A., 1984. The increase in intracellular free Ca2+ associated with IgG 2b/l Fc receptor-ligand interaction: role in phagocytosis. Proc. Natl. Acad. Sci. USA 81:5430.PubMedCrossRefGoogle Scholar
  43. Zigmond, S.H., Slonczewski, J.L., Wilde, M.W., Carson, M., 1988. Polymorphonuclear leukocyte locomotion is insensitive to lowered cytoplasmic calcium levels. Cell Motility and the Cytoskeleton 9:184.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Francesco Di Virgilio
    • 1
  • Paola Pizzo
    • 1
  • Enzo Picello
    • 1
  1. 1.C.N.R. Center for the Study of the Physiology of Mitochondria and Institute of General PathologyPadovaItaly

Personalised recommendations