Neutrophil Carbohydrate Metabolism in Patients with Essential Hypertension and Uremia

  • M. Haag-Weber
  • P. Schollmeyer
  • W. H. Hörl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 297)


Infectious complications result in significant morbidity and mortality of patients with end-stage renal disease. Uremia is an immunocompromised state due to direct effects of uremic toxins and indirect factors, e. g. malnutrition, dialysis membranes with their effects on complement system and white blood cells, or vascular access for dialysis providing a portal of entry for microorganisms (1). Dysfunction of polymorphonuclear (PMN) cells in uremia includes adherence, the first step in neutrophil migration, Chemotaxis, phagocytotic capacity, generation of reactive oxygen intermediates or intracellular killing of bacteria (2).


Essential Hypertension Calcium Channel Blocker Hemodialysis Patient Phorbol Myristate Acetate Uremic Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tolkoff, N.E., Rubin, R.H.: Uremia and host defenses. N. Engl. J. Med. 322:770–772 (1990).CrossRefGoogle Scholar
  2. 2.
    Haag-Weber, M., Hable, M., Schollmeyer, P., Hörl, W.H.: Metabolic response of neutrophils to uremia and dialysis. Kidney Int. 36 (Suppl 27):293–298 (1989).Google Scholar
  3. 3.
    Clark, R.A., Hamony, B.H., Ford, G., Kimball, H.R.: Chemotaxis in acute renal failure. J. Infect. Dis. 12 6: 460–463 (1972).CrossRefGoogle Scholar
  4. 4.
    Baum, J., Cestero, R.V.M., Freeman, R.B.: Chemotaxis of polymorphonuclear leukocytes and delayed hypersensitivity in uremia. Kidney Int. 7 (Suppl 2):147–153 (1975).Google Scholar
  5. 5.
    Siriwatratananonta, P., Sinsakul, V., Stern, K., Slavin, R.G.: Defective Chemotaxis in uremia. J. Lab. Clin. Med. 92:402–407 (1978).PubMedGoogle Scholar
  6. 6.
    Pedersen, J.O., Knudsen, F., Nielsen, A.H., Grunnet, N.: The ability of uremic serum to induce neutrophil Chemotaxis in relation to hemodialysis 5:24–28 (1987).Google Scholar
  7. 7.
    Hirabayashi, Y., Kobayashi, T., Nishikawa, A., Aoki, T., Takaya, J., Kobayashi, Y.: Oxidative metabolism and phagocytosis of polymorphonuclear leukocytes in patients with chronic renal failure. Nephron 49:305–312 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    Vanholder, R.C., Dhondt, A., Ringoir, S.M.G.: Challenge of phagocyte metabolism by extracorporeal test. Trans. Am. Soc. Artif. Intern. Organs 34:214–218 (1988).Google Scholar
  9. 9.
    Hällgren, R., Fjellström, K.E., Venge P.: Kineticstudies of phagocytosis. II. The serum-independent uptake of IgG-coated particles by polymorphonuclear leukocytes from uremic patients on regular dialysis treatment. J. Lab. Clin. Med. 94:277–284 (1979).PubMedGoogle Scholar
  10. 10.
    Ritchey, E.E., Wallin, J.D., Shah, S.V.: Chemilumi-nescence and superoxide anion production by leukocytes from chronic hemodialysis patients. Kidney Int. 19:349–358 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    Nguyen, A.T., Lethias, C., Zingraff, J., Herbelin, A., Naret, C., Descamps-Latscha, B.: Hemodialysis membrane-induced activation of phagocyte oxidative metabolism detected in vivo and in vitro within microamounts of whole blood. Kidney Int. 28:158–167 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    Kolb, G.F, Schönemann, H., Fischer, W., Bittner, K., Lange, H., Hoffken, H., Damann, V., Joseph, K., Havemann, K.: Hemodialysis with cuprophane membranes leads to alteration of granulocyte oxidative metabolism and leukocyte sequestion in the lung. In: Hörl, W.H., Heidland, A. (eds) Proteases: Potential Role in Health and Disease II. Plenum, New York, pp. 377–384 (1988).CrossRefGoogle Scholar
  13. 13.
    Markert, M., Heierli, C., Kuwahara, T., Frei, J., Wauters, J.P.: Dialyzed polymorphonuclear neutrophil oxidative metabolism during dialysis: a comparative study with 5 new and reused membranes. Clin. Nephrol. 29:129–136 (1988).PubMedGoogle Scholar
  14. 14.
    McCaleb, M.L., Izzo, M.S., Lockwood, D.H.: Characterization and partial purification of a factor from uremic human serum that induces insulin resistance. J. Clin. Invest. 75:391–396 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    DeFronzo, Tobin, J.D., Rowe, J.W., Andres, R.: Glucose intolerance in uremia. J. Clin. Invest. 62:425–435 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    Hampers, C.L., Soeldner, J.S., Doak, P.B., Merrill, J.P.: Effect of chronic renal failure and hemodialysis on carbohydrate metabolism. J. Clin. Invest. 45:1719–1731 (1966).PubMedCrossRefGoogle Scholar
  17. 17.
    Balesteri, P., Rindi, P., Biagini, M., Giovanetti, S.: Effects of uraemic serum, urea, creatinine and methyl-guanidine on glucose metabolism. Clin. Sci. 42:395–404 (1972).Google Scholar
  18. 18.
    Morgan, J.M., Morgan, R.E.: Study of the effect of uremic metabolites on erythrocyte glycosis. Metabolism 13:629–635 (1964).PubMedCrossRefGoogle Scholar
  19. 19.
    Dzurik, R.: Metabolic alterations caused by uremia. Proc. Eur. Dial. Tranplant. Assoc. 17:577–586 (1980).Google Scholar
  20. 20.
    McCaleb, M.L., Mevorach, R., Freeman, R.B., Izzo, M.S., Lockwood, D.H.: Induction of insulin resistance in normal adipose tissue by uremic human serum. Kidney Int. 25: 416–421 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    Korchak, H.M., Rutherford, L.E., Weissmann, G.: Stimulus response coupling in the human neutrophiles. I. Kinetic analysis of changes in calcium permeability. J. Biol. Chem. 259:4070 (1984).PubMedGoogle Scholar
  22. 22.
    McCall, C., Schmitt, J., Cousart, S., O’Flaherty, J., Bass, D., Wykle, R.: Stimulation of hexose transport by human polymorphonuclear leucocytes: a possible role of protein kinase C. Biochem. Biophys. Res. Comm. 126:450–456 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    Krause, K.H., Schlegel, W., Wollheim, C.B., Andersson, T., Waldvogel, F.A., Lew, P.D.: Chemotactic peptide activation of human neutrophils and HL-60 cells. Pertussis toxin reveals correlation between inositol triphosphate generation, calcium ion transients, and cellular activation. J. Clin. Invest. 76:1348–1354 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    Haag-Weber, M., Hable, M., Schollmeyer, P., Hörl, W.H.: Hemodialysis improves carbohydrate metabolism in polymorphonuclear neutrophils (PMN) (abstract). Kidney Int. 35: 248 (1989).Google Scholar
  25. 25.
    Haag-Weber, M., Schollmeyer, P., Hörl, W.H.: Neutrophil activation during hemodialysis. In: Hörl, W.H., Schollmeyer, P.J. (eds) New Perspectives in Hemodialysis, Peritoneal Dialysis, Arteriovenous Hemofiltration, and Plasmapheresis. Plenum, New York, pp. 27–37 (1989).CrossRefGoogle Scholar
  26. 26.
    Hörl, W.H., Haag-Weber, M., Georgopoulos, A., Block, L.H.: The physicochemical charaterization of a polypeptide present in uremic serum that inhibits the biological activity of polymorphonuclear cells. Proc. Natl. Acad. Sei. USA 87:6353–6357 (1990).CrossRefGoogle Scholar
  27. 27.
    Ohlsson, K., Olsson, I.: Neutral proteases of human granulocytes. III. Interaction between human granulocyte elastase and plasma protease inhibitors. Scand. J. Lab. Invest. 34:349–355 (1974).CrossRefGoogle Scholar
  28. 28.
    Hörl, W.H., Steinhauer, H.B., Schollmeyer, P.: Plasma levels of granulocyte elastase during hemodialyis: Effects of different dialyzer membranes. Kidney Int. 28: 791–796 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    Hörl, W.H., Jochum, M., Heidland, A., Fritz, H.: Release of granulocyte proteinases during hemodialysis. Am. J. Nephrol. 3:213–217 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    Hörl, W.H., Schäfer, R.M., Heidland, A.: Effect of different dialyzers on proteinase inhibitors during hemodialysis. Am. J. Nephrol. 5:320–326 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    Modan, M., Halkin, H., Almong, S., Lusky, A., Eshkol, A., Shefi, M., Shifrit, H., Fuchs, Z.: Hyperinsulinemia: a link between hypertension obesity and glucose intolerance. J. Clin. Invest. 75:809–817 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    Ferrannini, E., Buzzigoli, G., Bonadonna, R., Giorico, A., Oleggini, M., Graziadei, L., Pedrinelli, R., Brandi, L., Bevilacqua, S.: Insulin resistance in essential hypertension. N. Engl. J. Med. 317:350–357 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    Briggs, W.A., Sillix, D.H., Mahajan, S., McDonald, F.D.: Leukocyte metabolism and infection in uremia. Kidney Int. 24 (Suppl 16):93–96 (1983).Google Scholar
  34. 34.
    DeFronzo, R.A., Smith, D., Alvestrand, A.: Insulin action in uremia. Kidney Int. 24 (Suppl 16):102–114 (1983).Google Scholar
  35. 35.
    Resnick, L.M., Laragh, J.H: Renin, calium metabolism and the pathophysiologic basis of antihypertensive therapy. Am. J. Cardiol. 56:68H–74H (1985).CrossRefGoogle Scholar
  36. 36.
    Lew, D.P.: Receptor signalling and intracellular calcium in neutrophil activation. Europ. J. Clin. Invest. 19: 338–346 (1989).PubMedCrossRefGoogle Scholar
  37. 37.
    Haag-Weber, M., Schollmeyer, P., Hörl, W.H.: Granulocyte activation in the absence of complement activation: Inhibition by calcium channel blockers. Europ. J. Clin. Invest. 18:380–385 (1988).PubMedCrossRefGoogle Scholar
  38. 38.
    Riegel, W., Spillner, G., Schlosser, V., Hörl, W.H.: Plasma levels of main granulocyte components during cardiopulmonary bypass. J. Thorac Cardiovasc Surg 95: 1014–1019 (1988).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • M. Haag-Weber
    • 1
  • P. Schollmeyer
    • 1
  • W. H. Hörl
    • 1
  1. 1.Department of Medicine, Division of NephrologyUniversity of FreiburgGermany

Personalised recommendations