Skip to main content

Field Theories on Supermanifolds: General Formalism, Local Supersymmetry, and the Limit of Global Supersymmetry

  • Chapter
Topological Properties and Global Structure of Space-Time

Part of the book series: NATO ASI Series

  • 120 Accesses

Abstract

The aim of this paper is to report briefly on recent investigations concerning the formulation of field theories on supermanifolds. The motivation of this research is twofold. On one hand, the usual formulations of “superspace field theories”, see e.g. Ref.1, are highly unsatisfactory from a mathematical viewpoint. The main criticisms that can be aroused are: (i) in classical (non-quantum) supersymmetric field theories spinor components have to be anticommuting c-numbers (?); (ii) superspace2 is defined formally (for instance, general coordinate transformations are mathematically not well defined). As a consequence, there is no room for studying global (topological) properties of superspace; (iii) most manipulations (e.g. the derivation of field equations from a variational principle) are merely formal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Wess and J. Bagger, “Supersymmetry and supergravity”, Princeton University Press, Priceton, Nj, (1983).

    MATH  Google Scholar 

  2. A. Salam and J. Strathdee, Supergauge transformations, Nucl. Phys. B76: 477 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Rogers, A global theory of supermanifolds, J. Math. Phys. 21:1352 (1980);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Super Lie groups: global topology and local structure, J. Math. Phys. 22:939 (1981); paper in these Proceedings.

    Article  MathSciNet  Google Scholar 

  5. A. Jadczyk and K. Pilch, Superspaces and supersymmetries, Commun. Math. Phys. 78:383 (1981).

    MathSciNet  ADS  Google Scholar 

  6. C. P. Boyer and S. Gitler, The theory of G∞-supermanifolds, Trans. Ams 285:241 (1984).

    MathSciNet  MATH  Google Scholar 

  7. U. Bruzzo and R. Cianci, An existence result for super Lie groups, Lett. Math. Phys $18:279 (1984); Mathematical theory of super fibre bundles, Class. Quantum Gray. 1:213 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  8. U. Bruzzo and R. Cianci, Strucure of supermanifolds and supersymmetry transformations, Commun. Math. Phys. 95:393 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. U. Bruzzo and R. Cianci, Gauge field theories on supermanifolds: the variational formalism, Quademi Dip. Matematica Univ. Milano.

    Google Scholar 

  10. U. Bruzzo and R. Cianci, On the structure of superfields in a field theory on a supermanifold, Quaderni Dip. Matematica Univ. Milano.

    Google Scholar 

  11. U. Bruzzo and R. Cianci, forthcoming paper.

    Google Scholar 

  12. W. Greub, S. Halperin, and R. Vanstone, “Connection, Curvature and Cohomology”, Vol. I, Academic, New York (1972).

    Google Scholar 

  13. J. Rabin and L. Crane, Global properties of supermanifolds, Preprint Enrico Fermi Institute, Chicago (1984).

    Google Scholar 

  14. R. Abraham, J. E. Marsden, and T. Ratiu, “Manifolds and tensor analysis and applications”, Addison-Wesley, Reading, Ma (1983).

    MATH  Google Scholar 

  15. R. Catenacci, C. Reina, P. Teofilatto, On the body of supermanifolds, J. Math. Phys. 26:271 (1985).

    MathSciNet  Google Scholar 

  16. J. Rabin, paper in these Proceedings.

    Google Scholar 

  17. J. Dieudonné, “Foundations of modern analysis”, Academic, New York (1960).

    MATH  Google Scholar 

  18. A. Rogers, Consistent superspace integration, J. Math. Phys. 26:385 (1985); Realising the Berezin Integral as a superspace contour integral, Preprint King’s College (1985); paper in these Proceedings; R.F. Picken and K. Sundermeyer, Integration on supermanifolds and a generalized Cartan calculus, Preprint Institut für Theorie der Elementarenteilchen, Freie Universität Berlin.

    Google Scholar 

  19. R. D’Auria, P. Fré, P. K. Townsend, and P. van Nieuwenhuizen, Invariance of actions, rheonomy, and the new minimal N=l supergravity in the group manifold approach, Ann. Phys.155: 423 (1984).

    Article  ADS  Google Scholar 

  20. S. Kobayashi and K. Nomizu, “Foundations of differential geometry”, Vol. I, Interscience, New York (1983).

    Google Scholar 

  21. S. Ferrara, F. Gliozzi, J. Scherk, and P. van Nieuwenhuizen, Matter couplings in supergravity theory, Nucl. Phys.B117:333 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bruzzo, U. (1986). Field Theories on Supermanifolds: General Formalism, Local Supersymmetry, and the Limit of Global Supersymmetry. In: Bergmann, P.G., De Sabbata, V. (eds) Topological Properties and Global Structure of Space-Time. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3626-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3626-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3628-8

  • Online ISBN: 978-1-4899-3626-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics