Skip to main content

Part of the book series: NATO ASI Series

  • 118 Accesses

Abstract

The concept of supermanifold enables one to extend the idea of a conventional manifold to include anticommuting objects. Much of the original work in this field was motivated by a desire to clarify the mathematics of fermi field quantisation; in the approach of Berezin and Leîtes1 and Kostant2, the sheaf of C functions on a manifold X is extended to a sheaf A(·) of graded commutative algebras; the key idea is that there is an open cover \( X = \mathop{ \cup }\limits_{{\alpha \in \Lambda }} {U_{\alpha }} \) such that

$$ A\left( {{U_{\alpha }}} \right) \simeq {C_{\infty }}\left( {{U_{\alpha }}} \right) \otimes \Lambda \left( {{K^{n}}} \right) $$
((1.1.1))

where ∧(Kn) denotes the Grassmann algebra over Kn (with K the real or complex field). If X has dimension m the supermanifold is said to be (m, n) dimensional. At this point it is useful to define these Grassmann algebras in detail: ∧(Kn) is the algebra over K with generators 1 (the unit) and θ1, ..., θn and with relations

$$ {\theta ^{i}}{\theta ^{j}} = - {\theta ^{j}}{\theta ^{i}}\quad i,j = 1,...,n$$
((1.1.2))

A typical element may be written

$$ b = {\lambda _{\phi }} + \sum\limits_{{i = 1}}^{n} {{\lambda _{{\left( i \right)}}}{\theta ^{i}} + \sum\limits_{{i < j = 1}}^{n} {{\lambda _{{\left( {i,j} \right)}}}{\theta ^{i}}{\theta ^{j}}} + ....,}$$
((1.1.3))

where the λ coefficients are elements of K. A more compact nation (due Kostant2) is to let Mn denote the set of sequences of intergers (μ1, ...,μk) with 1 ≤ μ1 < ... < μk ≤ n, and

$$ {\theta ^{\mu }}: = {\theta ^{{{\mu _{1}}}}}...{\theta ^{{{\mu _{k}}}}} $$
((1.1.4))

.

SERC advanced research fellow

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.A. Berezin and D. Leîtes, Sov. Math. Dokl. 16: 1218 (1975).

    MATH  Google Scholar 

  2. B. Kostant, Graded manifolds, graded Lie theory and pre-quantisation, in “Differential Geometric Methods in Mathematical Physics”, Lecture Notes in Mathematics 570, Springer (1977).

    Google Scholar 

  3. A. Rogers, Journ. Math. Phys. 21: 1352 (1980).

    Article  ADS  MATH  Google Scholar 

  4. C. Boyer and S. Gitler, Trans. Am, Math. Soc. 285: 241 (1984).

    MathSciNet  MATH  Google Scholar 

  5. M. Rothstein, “On the resolution of some difficulties in the theory of G supermanifolds”, Washington University Preprint.

    Google Scholar 

  6. B.S. De Witt, “Supermanifolds”, Cambridge University Press (1984).

    Google Scholar 

  7. A. Jadzyck and K. Pilch, Comm. Math. Phys. (1981) 373.

    Google Scholar 

  8. M. Batchelor, Graded manifolds and Supermanifolds in “Mathematical Aspects of Superspace”, eds. C.J.S. Clarke, A. Rosenblum and H.-J. Siefert, Reidel, Dordrecht (1984).

    Google Scholar 

  9. M. Batchelor, Trans. Am. Math. Soc. 258: 257 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Batchelor, Trans. Am. Math. Soc. 253: 329 (1980).

    Article  MathSciNet  Google Scholar 

  11. P. Green, Proc. Am. Math. Soc. 85: 587 (1982).

    Article  MATH  Google Scholar 

  12. F.A. Berezin, “The Method of Second Quantisation”, Academic Press, New York, 1966.

    Google Scholar 

  13. F.A. Berezin, Sov. Journ. Nucl. Phys. 30: 605 (1975).

    MathSciNet  Google Scholar 

  14. A. Rogers, “On the existence of global integral superforms on supermanifolds” to appear Journ. Math. Phys.

    Google Scholar 

  15. D.A. Leites, Uspeki. Math. Nauk. 35: 3 (1980) (translated: Russian Mathematical Surveys 35: 1 (1980)).

    MathSciNet  MATH  Google Scholar 

  16. R. Arnowitt, P. Nath and B. Zumino, Phys. Lett. B56: 82 (1975).

    MathSciNet  Google Scholar 

  17. M. Batchelor, “An Algebraic Approach to Integration”, Cambridge University preprint.

    Google Scholar 

  18. A. Rogers, Journ. Math. Phys. 26: 385 (1985).

    Article  ADS  MATH  Google Scholar 

  19. A. Rogers, “Realising the Berezin integral as a suerspace contour integral”, King’s College Preprint, March 1985.

    Google Scholar 

  20. J. Rabin, the Berezin integral as a contour integral, in Proceedings of the conference “supersymmetry in Physics” held at Los Alamos National Laboratory, December 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rogers, A. (1986). Integration and Global Aspects of Supermanifolds. In: Bergmann, P.G., De Sabbata, V. (eds) Topological Properties and Global Structure of Space-Time. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3626-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3626-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3628-8

  • Online ISBN: 978-1-4899-3626-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics