Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 155))

Abstract

The scope of these lectures is to give an introduction to the method of infrared spectroscopy applied to organic conductors. The interesting excitations, signatures of interactions and instabilities, and plasma oscillations, all occur in the infrared to near infrared range corresponding to photon energies up to about 1.5–2 eV. However, most of what is said is also valid for many of the inorganic, wider band low-dimensional conductors, although the interesting range here extends to higher frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, F. Wooten, “Optical Properties of Solids”, Academic Press, New York (1972).

    Google Scholar 

  2. W.P. Dumke, Phys. Rev. 124:1813 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  3. C. S. Jacobsen, J. M. Williams, and H. H. Wang, Solid State Commun. 54: 937 (1985) and erratum 57:no.8:i (1986).

    Article  ADS  Google Scholar 

  4. A.N. Bloch and S. Mazumdar, J. Physique. 44: Colloque 3: 1273 (1983);

    Article  Google Scholar 

  5. S. Mazumdar and A.N. Bloch, Phys. Rev. Lett. 50:207 (1983).

    Article  ADS  Google Scholar 

  6. S. Mazumdar and S.N. Dixit, Phys. Rev. B34:3683 (1986)

    Article  ADS  Google Scholar 

  7. S. Mazumdar and Z.G. Soos, Phys. Rev. B 23:2810 (1981).

    Article  ADS  Google Scholar 

  8. M.J. Rice, Solid State Commun. 31:93 (1979).

    Article  ADS  Google Scholar 

  9. D. Baeriswyl, J. Carmelo, and A. Luther, Phys. Rev. B. 33:7247 (1986).

    Article  ADS  Google Scholar 

  10. C.S. Jacobsen, J.Phys .CSolid State Phys. 19:0000 (1986).

    Google Scholar 

  11. P.F. Maldague, Phys. Rev. B 16:2437 (1977).

    Article  ADS  Google Scholar 

  12. E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20:1445 (1968).

    Article  ADS  Google Scholar 

  13. T. Holstein, Phys. Rev. 96:535 (1954);

    Article  ADS  Google Scholar 

  14. T. Holstein, Ann. Phys.(N.Y.) 29:410 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  15. P.B. Allen, Phys. Rev. B 3:305 (1971).

    Article  ADS  Google Scholar 

  16. J.J. Hopfield, Comments Solid State Phys. 3:38 (1970).

    Google Scholar 

  17. See, for example, A. Painelli and A. Girlando, J. Chem. Phys. 84:5655 (1986).

    Article  ADS  Google Scholar 

  18. P.A. Lee, T.M. Rice, and P.W. Anderson, Solid State Commun. 14:703 (1974).

    Article  ADS  Google Scholar 

  19. M.J. Rice, C.B. Duke, and N.O. Lipari, Solid State Commun. 17:1089 (1975).

    Article  ADS  Google Scholar 

  20. M. J. Rice, Solid State Commun. 25:1083 (1978).

    Article  ADS  Google Scholar 

  21. R.H. Young and E.I.P. Walker, Phys. Rev. B 15:631 (1977).

    Article  ADS  Google Scholar 

  22. J.E. Eldridge and G.S. Bates, Mol. Cryst. Liq. Cryst. 119:183 (1985).

    Article  Google Scholar 

  23. J.B. Torrance, B.A. Scott, B. Welber, F.B. Kaufman, and P.E. Seiden, Phys. Rev. B 19:730 (1979).

    Article  ADS  Google Scholar 

  24. K. Kikuchi, Y. Ikemoto, K. Yakushi, H. Kuroda, and K. Kobayashi, Solid State Commun. 42:433 (1982).

    Article  ADS  Google Scholar 

  25. B. Welber, P.E. Seiden, and P.M. Grant, Phys. Rev. B 18:2692 (1978).

    Article  ADS  Google Scholar 

  26. A.J. Schultz, G.D. Stucky, R.H. Blessing, and P. Coppens, J. Am. Chem. Soc. 98:3194 (1974).

    Article  Google Scholar 

  27. D. Debray, R. Millet, D. Jerome, S. Barisic, J.M. Fabre, and L. Girai, J. Physique-Lettr. 38:L277 (1977).

    Article  Google Scholar 

  28. F. Herman, Physica Scripta 16:303 (1977).

    Article  ADS  Google Scholar 

  29. C.S. Jacobsen, D.B. Tanner, and K. Bechgaard, Phys. Rev. B 28:7019 (1983).

    Article  ADS  Google Scholar 

  30. C.S. Jacobsen, K. Mortensen, J.R. Andersen, and K. Bechgaard, Phys. Rev. B 18:905 (1978).

    Article  ADS  Google Scholar 

  31. C.S. Jacobsen, Mat. Fys. Medd. Dan. Vid. Selsk. 41:251 (1985).

    Google Scholar 

  32. C.S. Jacobsen, D.B. Tanner, and K. Bechgaard, Phys. Rev. Lett. 46:1142 (1981).

    Article  ADS  Google Scholar 

  33. C.S. Jacobsen, D.B. Tanner, J.M. Williams, and H.H. Wang, Synthetic Metals, in press.

    Google Scholar 

  34. H. Taj ima, H. Kanbara, K. Yakushi, H. Kuroda, and G. Saito, Synthetic Metals, in press.

    Google Scholar 

  35. C.S. Jacobsen, H.J. Pedersen, K. Mortensen, and K. Bechgaard, J. Phys. C: Solid State Phys. 13:3411 (1980).

    Article  ADS  Google Scholar 

  36. K. Mortensen, C.S. Jacobsen, A. Lindegaard-Andersen, and K. Bechgaard, J. Physique. 44: Colloque 3:1349 (1983).

    Google Scholar 

  37. C.S. Jacobsen and K. Bechgaard, Mol. Cryst. Liq. Cryst. 120:71 (1985).

    Article  Google Scholar 

  38. J. Bernasconi, M.J. Rice, W.R. Schneider, and S. Strässler, Phys. Rev. B 12:1090 (1975).

    Article  ADS  Google Scholar 

  39. For a review, see for example, D. Jerome, and H.J. Schultz, Advances in Phys. 31:299 (1982).

    Article  ADS  Google Scholar 

  40. R. Bozio and C. Pecile, Solid State Commun. 37:193 (1981).

    Article  ADS  Google Scholar 

  41. D.B. Tanner, K.D. Cummings, and C. S. Jacobsen, Phys. Rev. Lett. 47:597 (1981);

    Article  ADS  Google Scholar 

  42. D.B. Tanner and C.S. Jacobsen, Mol. Cryst. Liq. Cryst. 85:137 (1982).

    Article  Google Scholar 

  43. G. Grüner, A. Zawadowski, and P.M. Chaikin, Phys. Rev. Lett. 46:511 (1981).

    Article  ADS  Google Scholar 

  44. See, for example, L. Forro, S. Bouffard, J.P. Pouget, J.Physique-lettr. 45:L543 (1984).

    Article  Google Scholar 

  45. See, for example, R. Bozio and C. Pecile in: “The Physics and Chemistry of Low-Dimensional Solids”, L. Alcacer, ed., Reidei, Dordrecht (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jacobsen, C.S. (1987). Infrared Properties of Organic Conductors. In: Jérome, D., Caron, L.G. (eds) Low-Dimensional Conductors and Superconductors. NATO ASI Series, vol 155. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3611-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3611-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3613-4

  • Online ISBN: 978-1-4899-3611-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics