Skip to main content

Optimal Control of Distributed Nuclear Reactors

  • Chapter
  • 192 Accesses

Part of the book series: Mathematical Concepts and Methods in Science and Engineering ((MCSENG,volume 41))

Abstract

This chapter is devoted to the problem of controlling the neutron flux distribution in a nuclear reactor core in which the spatial kinetic effects are important (Refs. 4.1 and 4.3). The problem consists of computing the control function that transfers the state of the system from an initial condition to a desired state, in a given period of time, and minimizes a quadratic performance index that penalizes the deviations from equilibrium so as to avoid potential spatial instabilities and high-power density spots (Refs. 4.17–4.20).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaudhuri, S. P., “Distributed Optimal Control in a Nuclear Reactor,” Int. J. Control 16(5), 927–940 (1972).

    Article  Google Scholar 

  2. Hsu, S., and Bailey, R. E., “Optimal Control of Spatially Dependent Nuclear Reactors,” Trans. Am. Nucl. Soc. 10, 253–260 (1967).

    Google Scholar 

  3. Kaplan, S., “The Property of Finality and the Analysis of Problems in Reactory Space-Time Kinetics by Various Modal Expansions,” Nucl. Sci. Eng. 9, 357–365 (1965).

    Google Scholar 

  4. Kliger, I., “Optimal Control of Space-Dependent Nuclear Reactor,” Trans. Am. Nucl. Soc. 8, 233–240 (1965).

    Google Scholar 

  5. Lazarevic, B., Obradovic, D., and Cuk, N., “Modal Approach to the Optimal Control System Synthesis of a Nuclear Reactor,” Int. J. Control 16(5), 817–830 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  6. Nieva, R., and Christensen, G. S., “Optimal Control of Distributed Nuclear Reactors Using Functional Analysis,” J. Optimization Theory Appl. 34(3), 445–458 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  7. Stacey, W. M., “Optimal Control of Xenon-Power Spatial Transients,” Nucl. Sci Eng. 33, 162–170 (1968).

    Google Scholar 

  8. Stacey, W. M., “Application of Variational Synthesis to the Optimal Control of Spatially Dependent Reactory Models,” Nucl. Sci. Eng. 39, 226–235 (1970).

    Google Scholar 

  9. Wang, P. K. C., “Control of Distributed Parameter Systems,” in Advances in Control Systems, Vol. 1, edited by C. T. Leondes, pp. 75–110, Academic Press, New York, 1964.

    Google Scholar 

  10. Wiberg, D. M., “Optimal Feedback Control of Spatial Xenon Oscillations,” Trans. Am. Nucl. Soc. 7, 219–225 (1966).

    Google Scholar 

  11. Wiberg, D. M., “Optimal Feedback Control of Spatial Xenon Oscillations in Nuclear Reactors,” Nucl. Sci. Eng. 27, 600–615 (1967).

    Google Scholar 

  12. Wiberg, D. M., “Optimal Control of Nuclear Reactory Systems,” Adv. Control Syst. Theory Appl. 5, 301–388 (1967).

    Google Scholar 

  13. Asatani, K., Shiotani, M., and Hattori, Y., “Suboptimal Control of Nuclear Reactors with Distributed Parameters Using Singular Perturbation Theory,” Nucl. Sci. Eng. 62, 9–19 (1977).

    Google Scholar 

  14. Athan, M., and Falb, P., Optimal Control, McGraw-Hill, New York, 1966.

    Google Scholar 

  15. Naser, J. A., and Chamber, P. L., “An Efficient Solution Method for Optimal Control of Nuclear Systems,” Nucl. Sci. Eng. 79, 99–109 (1981).

    Google Scholar 

  16. Lanczos, C., Applied Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1956.

    Google Scholar 

  17. Stakgold, I., Boundary Value Problems with Mathematical Physics, Vol. 1, MacMillan, London, 1967.

    Google Scholar 

  18. Keller, H. B., Numerical Methods for Two-Point Boundary Value Problems, Blaisdell, Waltham, Massachusetts, 1968.

    MATH  Google Scholar 

  19. Bellman, R. E., and Dreyfus, S. E., Applied Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1962.

    MATH  Google Scholar 

  20. Conte, S. D., Elementary Numerical Analysis, McGraw-Hill, New York, 1965.

    MATH  Google Scholar 

  21. Kyong, S. H., “An Optimal Control of a Distributed-Parameter Reactor,” Nucl. Sci. Eng. 32, 146–157 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Christensen, G.S., Soliman, S.A., Nieva, R. (1990). Optimal Control of Distributed Nuclear Reactors. In: Optimal Control of Distributed Nuclear Reactors. Mathematical Concepts and Methods in Science and Engineering, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3602-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3602-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3604-2

  • Online ISBN: 978-1-4899-3602-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics