Skip to main content

Thermodynamic and Kinetic Factors

  • Chapter
Liquid Phase Sintering

Abstract

Surface energies are the major factors determining behavior during liquid phase sintering. The minimum criteria for successful liquid phase sintering are i) a low temperature liquid, ii) solubility of the solid in the liquid, and iii) liquid wetting of the solid grains (1). These conditions result in a reduction in surface energy with liquid spreading. At high volume fractions of solid, the elimination of porosity and its associated surface energy requires shape accommodation on the part of the solid grains, which is dependent on solubility of the solid in the liquid. Furthermore the rate of microstructural coarsening during liquid phase sintering, as seen by the grain growth rate, increases with the solid-liquid surface energy. These factors lead to the conclusion that surface energy is the major driving force for densification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Gurland and J. T. Norton, “Role of the Binder Phase in Cemented Tungsten Carbide-Cobalt Alloys,” Trans. AIME, 1952, vol. 194, pp. 1051–1056.

    Google Scholar 

  2. L. E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley Publ., Reading, MA, 1975.

    Google Scholar 

  3. C. Isenberg, The Science of Soap Films and Soap Bubbles, Tieto Ltd., Avon, United Kingdom, 1978.

    Google Scholar 

  4. J. H. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes, third edition, Dover Publ., New York, NY, 1964.

    Google Scholar 

  5. R. S. Burdon, Surface Tension and the Spreading of Liquids, second edition, Cambridge University Press, Cambridge, United Kingdom, 1949.

    Google Scholar 

  6. V. N. Eremenko, Y. V. Naidich, and I. A. Lavrinenko, Liquid-Phase Sintering, Consultants Bureau, New York, NY, 1970.

    Book  Google Scholar 

  7. F. V. Lenel and T. Pecanha, “Observations on the Sintering of Compacts from a Mixture of Iron and Copper Powders,” Powder Met., 1973, vol. 16, pp. 351–365.

    CAS  Google Scholar 

  8. R. M. German, “Origin of the Necklace Structure in Liquid Phase Sintering,” Inter. J. Powder Met., 1986, vol. 23, in press.

    Google Scholar 

  9. A. M. Stoneham, “Ceramic Surfaces: Theoretical Studies,” J. Amer. Ceramic Soc, 1981, vol. 64, pp. 54–60.

    Article  CAS  Google Scholar 

  10. N. Eustathopoulos and J. C. Joud, “Interfacial Tension and Adsorption in Metallic Systems,” Current Topics in Materials Science, vol. 4, E. Kaldis (ed.), North-Holland Publ., Amsterdam, Netherlands, 1980, pp. 281–360.

    Google Scholar 

  11. J. J. Burton and E. S. Machlin, “Prediction of Segregation to Alloy Surfaces from Bulk Phase Diagrams,” Phys. Rev. Lett., 1976, vol. 37, pp. 1433–1436.

    Article  CAS  Google Scholar 

  12. E. D. Hondros and M. P. Seah, “Segregation to Interfaces,” Inter. Metals Revs., 1977, vol. 22, pp. 262–301.

    Article  CAS  Google Scholar 

  13. D. Camel, N. Eustathopoulos, and P. Desre, “Chemical Adsorption and Temperature Dependence of the Solid-Liquid Interfacial Tension of Metallic Binary Alloys,” Acta Met., 1980, vol. 28, pp. 239–247.

    Article  CAS  Google Scholar 

  14. M. P. Seah, “Grain Boundary Segregation,” J. Phys. F: Metal Phys., 1980, vol. 10, pp. 1043–1064.

    Article  CAS  Google Scholar 

  15. J. F. Kuzmick and E. N. Mazza, “Studies on Control of Growth or Shrinkage of Iron-Copper Compacts During Sintering,” Trans. AIME, 1950, vol. 188, pp. 1218–1219.

    Google Scholar 

  16. C. Durdaller, “The Effect of Additions of Copper, Nickel and Graphite on the Sintered Properties of Iron-Base Sintered P/M Parts,” Prog. Powder Met., 1969, vol. 25, pp. 73–100.

    Google Scholar 

  17. I. A. Aksay, C. E. Hoge and J. A. Pask, “Wetting Under Chemical Equilibrium and Nonequilibrium Conditions,” J. Phys. Chem., 1974, vol. 78, pp. 1178–1183.

    Article  CAS  Google Scholar 

  18. I. A. Aksay, C. E. Hoge, and J. A. Pask, “Phase Distribution in Solid-Liquid-Vapor Systems,” Surfaces and Interfaces of Class and Ceramics, V. D. Frechette, W. C. Lacourse and V. L. Burdick (eds.), Plenum Press, New York, NY, 1974, pp. 299–321.

    Chapter  Google Scholar 

  19. J. White, “Microstructure and Grain Growth in Ceramics in the Presence of a Liquid Phase,” Sintering and Related Phenomena, G. C. Kuczynski (ed.), Plenum Press, New York, NY, 1973, pp. 81–108.

    Chapter  Google Scholar 

  20. H. Fischmeister, A. Kannappan, L. Ho-Yi, and E. Navara, “Grain Growth During Sintering of W-Cu-Ni Alloys,” Phys. Sintering, 1969, vol. 1, pp. G1–G13.

    Google Scholar 

  21. P. E. D. Morgan and M. S. Koutsoutis, “Phase Studies Concerning Sintering in Aluminas Doped with Ti(+4),” J. Amer. Ceramic Soc, 1985, vol. 68, pp. C156–C158.

    Google Scholar 

  22. D. Y. Kim and A. Accary, “Mechanisms of Grain Growth Inhibition During Sintering of WC-Co Based Hard Metals,” Sintering Processes, G. C. Kuczynski (ed.), Plenum Press, New York, NY, 1980, pp. 235–244.

    Chapter  Google Scholar 

  23. T. J. Whalen and M. Humenik, “Sintering in the Presence of a Liquid Phase,” Sintering and Related Phenomena, G. C. Kuczynski, N. Hooton and C. Gibbon (eds.), Gordon and Breach, 1967, New York, NY, pp. 715–74

    Google Scholar 

  24. D. J. Lee and R. M. German, “Sintering Behavior of Iron-Aluminum Powder Mixtures,” Inter. J. Powder Met. Powder Tech., 1985, vol. 21, pp. 9–21.

    CAS  Google Scholar 

  25. W. D. Kingery, “Densification During Sintering in the Presence of a Liquid Phase. I. Theory,”. J. Appl. Phys., 1959, vol. 30, pp. 301–306.

    Article  CAS  Google Scholar 

  26. R. B. Heady and J. W. Cahn, “An Analysis of the Capillary Forces in Liquid-Phase Sintering of Spherical Particles,” Metall. Trans., 1970, vol. 1, pp. 185–189.

    CAS  Google Scholar 

  27. H. Emi, S. Endo, C. Kanaoka, and S. Kawai, “Measurement of Forces due to a Liquid Bridge between Spherical Solid Particles,” Int. Chem. Eng., 1979, vol. 19, pp. 300–306.

    Google Scholar 

  28. B. Derjaguin, “Concerning the Paper: ‘The Effect of Capillary Liquid on the Force of Adhesion between Spherical Solid Particles,’“ J. Colloid Interface Sci., 1968, vol. 26, p.253.

    Article  Google Scholar 

  29. H. M. Princen, “Comments on ‘The Effects of Capillary Liquid on the Force of Adhesion between Spherical Solid Particles,’“ J. Colloid Interface Sci., 1968, vol. 26, pp. 249–253.

    Article  CAS  Google Scholar 

  30. K. S. Hwang, “Analysis of Initial Stage Sintering in the Solid and Liquid Phase,” Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1984.

    Google Scholar 

  31. V. Smolej and S. Pejovnik, “Some Remarks on the Driving Force for Liquid-Phase Sintering,” I. Metallkde., 1976, vol. 67, pp. 603–605.

    CAS  Google Scholar 

  32. W. Pietsch and H. Rumpf, “Haftkraft, Kapillardruck, Flussingkeitsvolumen und Grenzwinkel einer Flussigkeitsbrucke zwischen zwei Kugeln,” Chemie-Ing.-Techn., 1967, vol. 39, pp. 885–893.

    Article  CAS  Google Scholar 

  33. G. Mason and W. C. Clark, “Liquid Bridges between Spheres,” Chem. Eng. Sci., 1965, vol. 20, pp. 859–866.

    Article  CAS  Google Scholar 

  34. Y. V. Naidich, I. A. Lavrinenko, and V. Y. Petrishchev, “Study on the Capillary Adhesive Forces Between Solid Particles with a Liquid Layer at the Points of Contact. 1. Spherical Particles,” Soviet Powder Met. Metal Ceram., 1965, vol. 4, pp. 129–133.

    Google Scholar 

  35. W. J. Huppmann and R. Riegger, “Modelling of Rearrangement Processes in Liquid Phase Sintering,” Acta Met., 1975, vol. 23, pp. 965–971.

    Article  CAS  Google Scholar 

  36. W. D. Kingery, “Sintering in the Presence of a Liquid Phase,” Ceramic Fabrication Processes, W. D. Kingery (ed.), John Wiley, New York, NY, 1958, pp. 131–143.

    Google Scholar 

  37. A. Crowson and J. W. Burlingame, “Activated Sintering of Steel Powders,” Processing of Metal and Ceramic Powders, R. M. German and K. W. Lay (eds.), The Metallurgical Society, Warrendale, PA, 1982, pp. 199–211.

    Google Scholar 

  38. A. P. Savitskii and N. N. Burtsev, “Compact Growth in Liquid Phase Sintering,” Soviet Powder Met. Metal Ceram., 1979, vol. 18, pp. 96–102.

    Google Scholar 

  39. A. P. Savitskii and L. S. Martsunova, “Effect of Solid-State Solubility on the Volume Changes Experienced by Aluminum During Liquid-Phase Sintering,” Soviet Powder Met. Metal Ceram., 1977, vol. 16, pp. 333–337.

    Article  Google Scholar 

  40. R. F. Snowball and D. R. Milner, “Densification Processes in the Tungsten Carbide-Cobalt System,” Powder Met., 1968, vol. 11, pp. 23–40.

    CAS  Google Scholar 

  41. W. D. Kingery “Sintering in the Presence of a Liquid Phase,” Kinetics of High-Temperature Processes, W. D. Kingery (ed.), John Wiley, New York, NY, 1959, pp. 187–194.

    Google Scholar 

  42. A. M. Brown and M. F. Ashby, “Correlations for Diffusion Constants,” Acta Met., 1980, vol. 28, pp. 1085–1101.

    Article  CAS  Google Scholar 

  43. W. Kehl and H. F. Fischmeister, “Liquid Phase Sintering of Al-Cu Compacts,” Powder Met., 1980, vol. 23, pp. 113–119.

    CAS  Google Scholar 

  44. V. Z. Bugakov, Diffusion in Metals and Alloys, National Technical Information Service, Springfield, VA, 1971.

    Google Scholar 

  45. A. P. Savitskii and N. N. Burtsev, “Effect of Powder Particle Size on the Growth of Titanium Compacts During Liquid-Phase Sintering with Aluminum,” Soviet Powder Met. Metal Ceram., 1981, vol. 20, pp. 618–621.

    Article  Google Scholar 

  46. R. W. Heckel, R. D. Lanam, and R. A. Tanzilli, “Techniques for the Study of Homogenization in Compacts of Blended Powders,” Advanced Experimental Techniques in Powder Metallurgy, J. S. Hirschhorn and K. H. Roll (eds.), Plenum Press, New York, NY, 1970, pp. 139–188.

    Chapter  Google Scholar 

  47. J. Beretka and T. Brown, “Effect of Particle Size on the Kinetics of the Reaction Between Magnesium and Aluminum Oxides,” J. Amer. Ceramic Soc., 1983, vol. 66, pp. 383–388.

    Article  CAS  Google Scholar 

  48. J. Beretka, “Kinetic Analysis of Solid-State Reactions Between Powdered Reactants,” J. Amer. Ceramic Soc, 1984, vol. 67, pp. 615–620.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

German, R.M. (1985). Thermodynamic and Kinetic Factors. In: Liquid Phase Sintering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3599-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3599-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3601-1

  • Online ISBN: 978-1-4899-3599-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics