Skip to main content

Laser Safety Standards: Evolution and Rationale

  • Chapter
  • 377 Accesses

Abstract

Laser safety standards may take several forms. The standard may be simply a list of guidelines—the do’s and don’ts of laser operation or of equipment design with no mention of exposure limits. Some standards may simply be a list of personnel exposure limits or product emission limits. Today most safety standards incorporate all of the above aspects to some extent. This chapter will give the history of laser standard development and explain the scientific and philosophical problems encountered in the development of today’s standards. The distinction between occupational exposure standards and equipment performance standards will also be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. O., Beatrice, E. S., and Bedell, R. B., 1972, Retina: ultrastructural alterations produced by extremely low levels of coherent radiation, Science, 177:58–60.

    Article  CAS  PubMed  Google Scholar 

  • ACIGH, 1968, American Conference of Governmental Industrial Hygienists, A Guide for Control of Laser Hazards, Cincinnati (1968, revised 1973, 1976).

    Google Scholar 

  • Anderson, F. A., 1974, Biological Bases for and Other Aspects of a Performance Standard for Laser Products, DHEW No. (FDA) 75–8004, Bureau of Radiological Health, Rockville, Maryland (July 1974).

    Google Scholar 

  • ANSI, 1976, American National Standards Institute, Safe Use of Lasers, Standard Z-l 36.1, New York.

    Google Scholar 

  • Beatrice, E. S., and Frisch, G. D., 1973, Retinal laser damage thresholds as a function of image diameter, Arch. Environ. Health, 27:322–326.

    Article  CAS  PubMed  Google Scholar 

  • Beatrice, E. S., Randolph, D. I., Zwick, H., Stuck, B. E., and Lund, D. J., 1977, Laser hazards: Biomedical threshold level investigations, Mil. Med., 14(11):889–892.

    Google Scholar 

  • Boettner, E. A., and Dankovic, D., 1974, Ocular absorption of laser radiation for calculating personnel hazards: Determination of the absorption coefficients in the rhesus monkey, Final contract report F41609–74-C-0008, University of Michigan, Ann Arbor, MI (Nov. 1974). (Available from NTIS: AD-A009 176)

    Google Scholar 

  • Borland, R. G., Brennan, D. H., Marshall, J., and Viveash, J. P., 1978, The role of fluorescein angiography in the detection of laser-induced damage to the retina: A threshold study for Q-switched, neodymium and ruby lasers, Exp. Eye Res., 27:471–493.

    Article  CAS  PubMed  Google Scholar 

  • Bredemeyer, H. G., Wiegmann, O. A., Bredemeyer, A., and Blackwell, H. R., 1963, Radiation thresholds for chorioretinal burns, Institute for Research in Vision and Department of Ophthalmology, Ohio State University, Columbus, OH, Air Force Tech. Doc. Rept. No. AMRL-TDR-63–71, July 1963, (Available from NTIS: AD 416 652).

    Google Scholar 

  • Bresnick, G. H., Frisch, G. D., Powell, J. O., Landers, M. B., Holst, G. C. and Dallas, A. G., 1971, Ocular effects of argon laser radiation, I. Retinal damage threshold studies. Invest. Ophthal. 9:901–910.

    Google Scholar 

  • Brownell, S., and Stuck, B. E., 1974, Ocular and skin hazards from CO2 laser radiation, Army Science Conference Proceedings, Vol. 1, pp. 123–138, US Military Academy, West Point, NY, NTIS No. AD785609, June 1974.

    Google Scholar 

  • Carpenter, J. A., Lehmiller, D. J., and Tredici, T. J., 1970, US Air Force permissible exposure levels for laser irradiation, Arch. Environ. Health, 20:171–176.

    Article  CAS  PubMed  Google Scholar 

  • Cavonius, D. R., Elgin, S., and Robbins, D. O., 1974, Thresholds for damage to the human retina by white light, Exp. Eye Res., 19:543–548.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, A. M., Geeraets, W. J., and Ham, W. T., Jr., 1969, An equilibrium thermal model for retinal injury, Appl. Opt, 8:1051–1054.

    Article  CAS  PubMed  Google Scholar 

  • Combs, G. F., Jr. and Scott, M. L., 1977, Nutritional interrelationships of Vitamin E and Selenium, BioScience, 27(7): 467–473.

    Article  Google Scholar 

  • Cope, F. W, Sever, R. J., and Polis, B. D., 1963, Reversible free radical generation in the melanin granules of the eye by visible light, Arch. Biochem. Biophys., 100:171–177.

    Google Scholar 

  • Dunsky, I. L., and Lappin, P. W., 1971, Evaluation of retinal thresholds for CW laser radiation, Vision Res., 11:733–738.

    Article  CAS  PubMed  Google Scholar 

  • Ebbers, R. W., and Dunsky, I. L., 1973, Retinal damage thresholds for multiple pulse lasers, Aerospace Med., 44:317–318.

    CAS  PubMed  Google Scholar 

  • Egbert, D. E., and Maher, E. F., 1977, Corneal damage thresholds for infrared laser exposure: empirical data, model predictions, and safety standards, Report SAM TR-77–29, US Air Force School of Aerospace Medicine, San Antonio, TX, December 1977. (Available from NTIS)

    Google Scholar 

  • Fankhauser, F., and Lotmar, W., 1968, Methods of Photocoagulation through the Goldman contact glass, Mod. Probl. Ophthal., 7:256–272.

    Google Scholar 

  • Fankhauser, F., 1977, Physical and biological effects of laser radiation, Klin. Monatsbl. Augen-heilkd., 170(2):219.

    CAS  Google Scholar 

  • Farrer, D. N., Graham, E. S., Ham, W. T., Jr., Geeraets, W. J., Williams, R. C., Mueller, H. A., Cleary, S. F., and Clarke, A. M., 1970, The effect of threshold macular lesions and subthreshold macular exposures on visual acuity in the rhesus monkey, Am. Ind. Hyg. Assn. J., 31(2): 198–205.

    Article  CAS  Google Scholar 

  • Fine, B. S., 1968, Corneal injury threshold to carbon dioxide laser irradiation, Am. J. Ophthal, 66(1): 1–15.

    CAS  PubMed  Google Scholar 

  • Finney, D. J., 1971, Probit Analysis, 3rd edn., Cambridge University Press, Cambridge.

    Google Scholar 

  • Fridovich, I., 1977, Oxygen is toxic!, BioScience, 27(7):462–466.

    Article  Google Scholar 

  • Frisch, G. D., Beatrice, E. S., and Holsen, R. C., 1971, Comparative study of argon and ruby retinal damage thresholds, Invest Ophthal, 10:911–919.

    CAS  PubMed  Google Scholar 

  • Geeraets, W. J., 1968, Retinal injury from laser and light exposure, in Laser Eye Effects, (H. G. Sperling, Ed.), Armed Forces-NRC Committee on Vision, National Research Council, Washington, DC, pp. 20–56.

    Google Scholar 

  • Geeraets, W. J., Burkhart, J., and Guerry, D., 1963, Enzyme activity in the coagulated retina, a means of studying thermal conduction as a function of exposure time, Acta Ophthal (Suppl.), 76:79–93.

    CAS  Google Scholar 

  • Gerathewohl, S. J., and Strughold, H., 1953, Motoric responses of the eyes when exposed to light flashes of high intensities and short durations. J. Aviat. Med., 24:200–207.

    CAS  PubMed  Google Scholar 

  • Gibbons, W. D., 1973, Retinal Burn Thresholds for Exposure to a Frequency-Doubled Neodymi-um Laser, USAF Report SAM-TR-73–45, US Air Force School of Aerospace Medicine, Brooks Air Force Base, TX.

    Google Scholar 

  • Gibbons, W. D. and Allen, R. G., 1977, Retinal damage from long-term exposure to laser radiation, Invest. Ophthal, Vis. Sci., 16(6):521–529.

    CAS  Google Scholar 

  • Gibbons, W. D., and Egbert, D. E., 1974, Ocular Damage Thresholds for Repetitive Pulsed Argon Laser Exposure, Report SAM-TR-74–1, US Air Force School of Aerospace Medicine, Brooks Air Force Base, San Antonio (February 1974).

    Google Scholar 

  • Gibson, G. L. M., 1970, Retinal Damage from Repeated Subthreshold Exposures Using a Ruby Laser Photocoagulator, Report SAM-TR-70–59, US Air Force School of Aerospace Medicine, Brooks Air Force Base, San Antonio, TX (October 1970) (Available from NTIS: AD 715 210).

    Google Scholar 

  • Goldman, A. I., Ham, W. T., Jr., and Mueller, H. A., 1977, Ocular damage thresholds and mechanisms for ultrashort pulses of both visible and infrared laser radiation in the rhesus monkey, Exp. Eye Res., 24:45–46.

    Article  CAS  PubMed  Google Scholar 

  • Gullberg, K., Hartman, B., Kock, E. and Tengroth, B., 1967, Carbon dioxide laser hazards to the eye, Nature, 215:857–858.

    Article  CAS  PubMed  Google Scholar 

  • Gubisch, R. W., 1967, Optical performance of the human eye, J. Opt. Soc. Am., 57:407–415.

    Article  Google Scholar 

  • Ham, W. T., Jr., Clarke, A. M., Geeraets, W. J., Cleary, S. F., Mueller, H. A., and Williams, R. C., 1970, The eye problem in laser safety, Arch. Environ. Health, 20:156–160.

    Article  PubMed  Google Scholar 

  • Ham, W. T., Jr., Williams, R. C., Geeraets, W. J., Ruffin, R. S., and Mueller, H. A., 1963, Optical masers (lasers), Acta Ophthal (Suppl.), 76:60–78.

    Google Scholar 

  • Ham, W. T., Jr., Geeraets, W. J., Mueller, H. A., Williams, R. C., Clarke, A. M., and Cleary, S. F., 1970, Retinal burn thresholds for the helium-neon laser in the rhesus monkey, Arch. Ophthal., 84:797–809.

    Article  PubMed  Google Scholar 

  • Ham, W. T., Jr., Mueller, H. A., and Sliney, D. H., 1976, Retinal sensitivity to damage from short wavelength light, Nature, 260(5547): 153–155.

    Article  PubMed  Google Scholar 

  • Ham, W. T., Jr., Ruffolo, J. J., Jr., Mueller, H. A., Clarke, A. M., and Moon, M. E., 1978, Histologic analysis of photochemical lesions produced in rhesus retina by short-wavelength light, Invest. Ophthal., Vis. Sci., 17(10): 1029–1035.

    Google Scholar 

  • Hatch, T. F., 1971, Thresholds: do they exist?, Arch. Environ. Health, 22:687–689.

    Article  CAS  PubMed  Google Scholar 

  • Hatch, T. F., 1973, Criteria for hazardous exposure limits, Arch. Environ. Health, 27:231–235.

    Article  CAS  PubMed  Google Scholar 

  • Hemstreet, H. W., Bruce, W. R., Altobelli, K. K., Stevens, C. C., and Connolly, J. S., 1974, Ocular Hazards of Picosecond and Repetitive Pulse Argon Laser Exposures, First Annual Report, February 1973-February 1974, USAF Contract for School of Aerospace Medicine, Brooks AFB, TX, Technology Inc., San Antonio, TX.

    Google Scholar 

  • Holmberg, B., and Winell, M., 1977, Occupational health standards, an international comparison, Scand. J. Work Environ. Health, 3:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Jones, A. E., and McCartney, A. J., 1966, Ruby laser effects on the monkey eye, Invest. Ophthal., 5:474–483.

    CAS  Google Scholar 

  • Lappin, P. W., and Coogan, P. S., 1970, Relative sensitivity of various areas of the retina to laser radiation, Arch. Ophthal., 84:350–354.

    Article  CAS  PubMed  Google Scholar 

  • Laser Institute of America, 1976, Laser Safety Guide, LIA, 4100 Executive Park Dr., Cincinnati, OH 45241.

    Google Scholar 

  • Lawwill, T., Crocket, S., and Currier, G., 1977, Retinal damage secondary to chronic light exposure, Doc. Ophthal, 44(2):379–402.

    Article  CAS  Google Scholar 

  • Lee, J. A. H., 1972, Sunlight and the etiology of malignant melanoma, In Melanoma and Skin Cancer, V.C.N. Blight, Government Printer, New South Wales.

    Google Scholar 

  • Lund, D. J., Landers, M. B., Bresnick, G. H., Powell, J. O., Chester, J. E., and Carver, C., 1970, Ocular hazards of the Q-switched erbium laser, Invest. Ophthal., 9(6):463–470.

    CAS  PubMed  Google Scholar 

  • Marshall, W. J., 1978, A proposal for a new method to determine MPE values for repetitive pulse trains, US Army Environmental Hygiene Agency, Aberdeen Proving Ground, MD, June 1978.,

    Google Scholar 

  • Moon, M. E., Clarke, A. M., Ruffolo, J. J., Jr., Mueller, H. A., and Ham, W. T., Jr., 1978, Visual performance in the rhesus monkey after exposure to blue light, Vis. Res., 18:1573–1577.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, H. A., and Ham, W. T., Jr., 1975, The ocular effects of single pulses of 10.6 μm and 2.5–3.0 μm Q-switched laser radiation, A Report to the Los Alamos Scientific Laboratory L-Division, Virginia Commonwealth University.

    Google Scholar 

  • Naidoff, M. A. and Sliney, D. H., 1974, Retinal injury from welding arc, Amer. J. Ophthalmol, 77(5):663–668.

    CAS  Google Scholar 

  • Noell, W. K. and Albrecht, R., 1971, Irreversible effects of visible light on the retina, Role of Vitamin A, Science, 172:72–75.

    Article  CAS  PubMed  Google Scholar 

  • Peabody, R. R., Rose, H., Zweng, H. C., Peppers, N. A., and Vassiliadis, A., 1969, Threshold damage from CO2 lasers, Arch. Ophthal., 82:105–107.

    Article  CAS  PubMed  Google Scholar 

  • Pitts, D. G., 1967, LGN single cell responses as a function of intense light flashes, in Proceedings of the US Army Natick Laboratory Flashblindness Symposium (J. M. Davies and D. G. Randolph, eds.), pp. 92–119, November 8–9,1967.

    Google Scholar 

  • Robbins, D. O., Zwick, H., and Holst, G. C., 1974, Functional assessment of laser exposures in an awake, task-oriented Rhesus monkey, Mod. Probl. Ophthal., 13:284–290.

    CAS  Google Scholar 

  • Skeen, C. H., Bruce, W. R., Tips, J. H., Jr., Smith, M. G., and Garza, C. G., 1972a, Ocular Effects of Repetitive Laser Pulses, Technology, Inc., San Antonio, Texas Air Force Contract F41609–71-C-0018 (June 30,1972) (AD 746795).

    Google Scholar 

  • Skeen, C. H., Bruce, W. R., Tips, J. H., Smith, M. G., and Garza, C. G., 1972b, Ocular Effects of Near Infrared Laser Radiation for Safety Criteria, US Air Force Contract No. F41609–71-C-0016, Technology, Inc., San Antonio, Texas (June 1972) (AD 746793).

    Google Scholar 

  • Sliney, D. H., 1969, Evaluating hazards and controlling them, Laser Focus, 5(15):39–42.

    Google Scholar 

  • Sliney, D. H., 1971, The development of laser safety criteria, in Lasers in Medicine and Biology, (M. L. Wolbarsht, Ed.), Vol I, pp. 163–238, Penum Press, New York.

    Chapter  Google Scholar 

  • Siney, D. H., and Palmisano, W. A., 1968, The evaluation of laser hazards, Am. Industr. Hyg. Assn. J., 29:325–431.

    Google Scholar 

  • Smith, K. C., 1978a, Symposium on DNA repair and its role in mutagenesis and carcinogenesis, Photochem. Photobiol, 28:119.

    Article  Google Scholar 

  • Smith, K. C., 1978b, Multiple pathways of DNA repair in bacteria and their roles in mutagenesis, Photochem. Photobiol, 28:121–129.

    Article  CAS  PubMed  Google Scholar 

  • Sperling, H. G., and Harwerth, R. S., 1971, Red-green cone interactions in the increment-threshold spectral sensitivity of primates, Science, 172:180–184.

    Article  CAS  PubMed  Google Scholar 

  • Stokinger, H. E., 1970, Criteria and procedures for assessing the toxic responses to industrial chemicals, in Permissible Levels of Toxic Substances in the Working Environment, pp. 36–52, International Labor Office, Geneva.

    Google Scholar 

  • Stuck, B. E., Lund, D. J., and Beatrice, E. S., 1978, Repetitive Pulse Laser Data and Permissible Exposure Limits Institute Report No. 58, Letterman Army Institute of Research, Division of Non-Ionizing Radiation, Presidio of San Francisco, San Francisco (April 1978).

    Google Scholar 

  • Trosko, J. E., and Chang, C., 1978, Relationship between mutagenesis and carcinogenesis, Photochem. Photobiol., 28:157–168.

    Article  CAS  PubMed  Google Scholar 

  • U.S. Department of the Army, 1975, Control of Hazards to Health from Laser Radiation, TB MED 279, 3rd Edn., Washington, DC (May 1975).

    Google Scholar 

  • U.S. Department of the Air Force, 1973, Laser Health Hazards Control, Air Force Manual AFM 161–168 (1973, under revision).

    Google Scholar 

  • U.S. Department of Commerce, National Bureau of Standards, 1963, Safety for Non-Medical X-Ray and Sealed Gamma-Ray Sources, NBS Handbook 93, ANSI Standard Z-9.1–1963, NBS Washington, DC.

    Google Scholar 

  • U. S. Department of Health, Education and Welfare, Food and Drug Administration, BRH, 1973, Laser Products, Proposed Performance Standard, in: Federal Register, 38(236):34084–34834091, Dec. 10, 1973.

    Google Scholar 

  • U.S. Deparment of Health, Education and Welfare, Food and Drug Administration, BRH, 1974, Laser Products, Proposed performance Standard, in: Federal Register, 39(172): 32094–32109, Sep. 4, 1974.

    Google Scholar 

  • U.S. Department of Health, Education and Welfare, Food and Drug Administration, BRH, 1975, Performance Standard for Laser Products, Title 21, Code of Federal Regulations, Part 1040, first published in: Federal Register, 40(148):32252–32266 (July 31, 1975); as amended in: Federal Register, 43(229):55387–55393 (November 28, 1978).

    Google Scholar 

  • U.S. Department of Labor, Occupational Safety and Health Administration, 1976, Title 29, Code of Federal Regulations, Part 1910.

    Google Scholar 

  • Vasiliadis, A., 1971, Ocular damage from laser radiation, in: “Laser Applications in Medicine and Biology,” M. L. Wolbarsht, ed., Vasiliadis, A., pp. 125–162, Plenum Press, New York.

    Chapter  Google Scholar 

  • Vassiliadis, A., Rosan, R. C., and Zweng, R. C., 1969, Research on ocular laser thresholds, SRI Report No. 7191, Stanford Research Institute, Menlo Park, California (NTIS No. AD 700422).

    Google Scholar 

  • Vassiliadis, A., Zweng, H. C., and Dedrick, K. G., 1971, Ocular Laser Threshold Investigations, SRI Report No. 8209, Stanford Research Institute, Menlo Park, California (January 1971). (Available from NTIS)

    Google Scholar 

  • Walkenbach, J. E., 1972, Determination of retinal lesion threshold energies of pulse repetition Nd3+: YAG laser in the Rhesus monkey, M. S. Thesis, Virginia Commonwealth University, Richmond, VA (June 1972).

    Google Scholar 

  • Wallow, I. H. L., Lund, O. E., and Gabel, V. P., 1974, A comparison of retinal argon laser lesions in man in cynomolgus monkey, Albrecht V. Graefes Arch Klin. Exp. Ophthalm., 189:159–164.

    CAS  Google Scholar 

  • Wallow, I. H. L., Gabel, V. P., Birnguber, R., and Hillenkamp, F., 1975, Clinical and histological studies following argon laser effects on the retina, histopathological evaluation of laser injuries for the assessment of a functional injury threshold for laser, Ber Dtsch. Ophthalmol., 73:360–362,

    Google Scholar 

  • Wallow, I. H. L., Gabel, V. P., Birnguber, R., and Hillenkamp, F., 1975 and Ber. Dtsch. Ophth. Ges., 73:374–386, 1975.

    Google Scholar 

  • Ward, B. and Bruce, W. R., 1971, Chorioretinal burn: body temperature dependence, Ann. Ophthal, 3:898.

    CAS  PubMed  Google Scholar 

  • Welch, A. J., and Priebe, A., 1973, Changes in the rabbit electroretinogram C-wave following ruby laser insult, Aerospace Med, 44(11): 1246–1250.

    PubMed  Google Scholar 

  • Wolbarsht, M. L., 1978, Electrophysiological Determination of Retinal Sensitivity to Color After Intense Monochromatic Light Adaptation, Report SAM-TR-78–9, U.S. Air Force School of Aerospace Medicine, Brooks Air Force Base, San Antonio, TX (September 1978).

    Google Scholar 

  • Wolbarsht, M. L. and Sliney, D. H., 1974, The formulation of protection standards for lasers, in: “Laser Applications in Medicine and Biology,” M. L. Wolbarsht, ed., Wolbarsht, M. L. and Sliney, D. H., pp. 309–359 Plenum Press, New York.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sliney, D., Wolbarsht, M. (1980). Laser Safety Standards: Evolution and Rationale. In: Safety with Lasers and Other Optical Sources. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3596-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3596-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3598-4

  • Online ISBN: 978-1-4899-3596-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics