Advertisement

Metabolism of Alkanes by Acinetobacter

  • O. Asperger
  • H.-P. Kleber
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 57)

Abstract

The ability to oxidise alkanes is widely distributed among prokaryotic and eukaryotic microorganisms. Acinetobacter is among the bacterial genera most often found in petroleum-contaminated habitats and has been extensively used in studies of n-alkane oxidation (Einsele, 1983). Research with this bacterium has contributed to the exploration of many aspects of microbial n-alkane metabolism.

Keywords

Alkane Oxidation Aldehyde Dehydrogenase Lipase Production Extracellular Vesicle Acinetobacter Calcoaceticus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amund, O. O., and Higgins, I.J., 1985, The degradation of 1-phenylalkanes by an oil-degrading strain of Acinetobacter lwoffi, Ant. van Leeuw. J. Microbiol. Serol., 51:45.CrossRefGoogle Scholar
  2. Asperger, O., 1990, Alkanoxidation und Elektronentransportsysteme bei Acinetobacter calcoaceticus unter besonderer Berücksichtigung des Vorkommens von Eisenschwefelproteinen und Cytochrom P-450, Dissertation B. Leipzig: Karl-M arx-Universität.Google Scholar
  3. Asperger, O., and Aurich, H., 1977, Anwendung polarographischer O2-Messungen auf die Veratmung von n-Alkanen und deren Derivaten durch Acinetobacter calcoaceticus, Zeits. Allg. Mikrobiol., 17:419.CrossRefGoogle Scholar
  4. Asperger, O., Futtig, A., Behrends, B., Kleber, H.-P., and Aurich, H., 1978a, Oxidation langkettiger n-Alkane durch zellfreie Extrakte von Acinetobacter calcoaceticus. Identifizierung und Bestimmung von n-Tetradekansäure nach Inkubation mit n-Tetradekan, Wiss. Zeits. Karl-Marx-Univ. Leipzig, Math. Naturwiss. Reihe, 27:3.Google Scholar
  5. Asperger, O., Kleber, H.-P., and Aurich, H., 1978b, Zytochrom-Zusammensetzung von Acinetobacter calcoaceticus, Acta Biol. Med. German., 37:191.PubMedGoogle Scholar
  6. Asperger, O., Borneleit, P., and Kleber, H.-P., 1981a, Untersuchungen zum Elektronentransportsystem in Acinetobacter calcoaceticus, Abh. Akad. Wiss. DDR, 3:259.Google Scholar
  7. Asperger, O., Naumann, A., and Kleber, H.-P. 1981b, Occurrence of cytochrome P-450 in Acinetobacter strains after growth on n-hexadecane, FEMS Microbiol. Lett., 11:309.CrossRefGoogle Scholar
  8. Asperger, O., Müller, R., and Kleber, H.-P., 1983, Isolierung von Cytochrom P-450 und des entsprechenden Reductasesystems aus Acinetobacter calcoacticus, Acta Biotech., 3:319.CrossRefGoogle Scholar
  9. Asperger, O., Naumann, A., and Kleber, H.-P., 1984, Inducibility of cytochrome P-450 in Acinetobacter calcoaceticus by n-alkanes, Appl. Microbiol. Biotech., 19:398.CrossRefGoogle Scholar
  10. Asperger, O., Müller, R., and Kleber, H.-P., 1985a, Reconstitution of n-alkane-oxidising activity of a purified cytochrome P-450 from Acinetobacter calcoaceticus strain EB104, in: “Cytochrome P-450, Biochemistry, Biophysics and Induction,” p.447, L. Vereczkey, and K. Magyar, eds., Elsevier Science Publishers, Amsterdam.Google Scholar
  11. Asperger, O., Stüwer, B., and Kleber, H.-P., 1985b, Aryl hydrocarbons as inducers of cytochrome P-450 in Acinetobacter calcoaceticus, Appl. Microbiol. Biotech., 21:309.CrossRefGoogle Scholar
  12. Asperger, O., Sharychev, A.A., Matyashova, R.N., Losinov, A.B., and Kleber, H.-P., 1986, Effect of oxygen limitation on the content of n-hexadecane-inducible cytochrome P-450 in Acinetobacter calcoaceticus strain EB104, J. Basic Microbiol., 26:571.PubMedCrossRefGoogle Scholar
  13. Aurich, H., 1979, Die Oxidation aliphatischer Kohlenwasserstoffe durch Bakterien, Sitz. Akad. Wiss. DDR, Math. Naturwiss. Tech., 16(N):3.Google Scholar
  14. Aurich, H., and Eitner, G., 1973, Oxidation von n-Hexadecan durch Acinetobacter calcoaceticus. Bedingungen und Induktion beteiligter Enzyme, Zeits. Allg. Mikrobiol., 13:539.CrossRefGoogle Scholar
  15. Aurich, H., and Eitner, G., 1977, Induktion der NADP +-abhangigen Aldehyddehydrogenase durch Kohlenwasserstoffe bei Acinetobacter calcoaceticus, Zeits. Allg. Mikrobiol., 17:263.CrossRefGoogle Scholar
  16. Aurich, H., Sorger, D., and Asperger, O., 1976, Isolierung und Charakterisierung eines Rubredoxins aus Acinetobacter calcoaceticus, Acta Biol. Med. German., 35:443.PubMedGoogle Scholar
  17. Aurich, H., Brückner, A., Asperger, O., Behrends, B., and Futtig, A., 1977, Oxidation von n-Tetradecan-1-14C durch zellfreie Extrakte aus Acinetobacter calcoaceticus, Zeits. Allg. Mikrobiol., 17:249.CrossRefGoogle Scholar
  18. Aurich, H., Sorger, H., Bergmann, R., Lasch, J., and Koelsch, R., 1983, Purification and characterization of membrane-bound aldehyde dehydrogenase from Acinetobacter calcoaceticus grown on long-chain alkanes, in “Enzyme Technology,” p.37, R.M. Lafferty, ed., Springer Verlag, Berlin.CrossRefGoogle Scholar
  19. Aurich, H., Bergmann, R., Lasch, J., Koelsch, R. and Sorger, H., 1985, Wechselwirkung der Aldehyddehydrogenase aus Acinetobacter calcoaceticus mit Membranlipiden. (II), J. Basic Microbiol., 25:631.CrossRefGoogle Scholar
  20. Aurich, H., Sorger, H., Bergmann, R., and Lasch, J., 1987, Zur Kinetik der membrangebundenen Aldehyd-Dehydrogenase aus Acinetobacter calcoaceticus, Biol. Chem. Hoppe-Seyler, 368:101.PubMedCrossRefGoogle Scholar
  21. Baumann, P., Doudoroff, M., and Stanier, R.Y. 1968, A study of the Moraxella group. II. Oxidase-negative species (genus Acinetobacter), J. Bacteriol., 95:1520.PubMedGoogle Scholar
  22. Borneleit, P., Hermsdorf, T., Claus, R., Walther, P., and Kleber, H.-P., 1988, Effect of hexadecane-induced vesiculation on the outer membrane of Acinetob acter calcoaceticus, J. Gen. Microbiol., 134:1983.PubMedGoogle Scholar
  23. Bouvet, P.J.M., and Grimont, P.A.D., 1986, Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., Acinetobacter junii sp. nov. and emended description of Acinetobacter calcoaceticus and Acinetobacter lwoffii, Int. J. Syst. Bacteriol., 3:228.Google Scholar
  24. Breuil, C., Shindler, B.D., Sijher, J.S., and Kushner, D.J., 1978, Stimulation of lipase production during bacterial growth on alkanes, J. Bacteriol., 133:601.PubMedGoogle Scholar
  25. Bryn, K., Jantzen, E., and Bovre, K., 1977, Occurrence and patterns of waxes in Neisseriaceae, J. Gen. Microbiol., 102:33.PubMedCrossRefGoogle Scholar
  26. Bühler, M., and Schindler, J., 1984, Aliphatic hydrocarbons, in “Biotechnology, vol.6a,” p.331, H.-J. Rehm, and G. Reed, eds., Verlag Chemie, Weinheim.Google Scholar
  27. Cardini, G., and Jurtschuk P., 1970, The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7EIC, J. Biol. Chem., 245:2789.PubMedGoogle Scholar
  28. Claus, R., Asperger, O., and Kleber, H.-P., 1978, Nachweis und partielle Anreicherung von Rubredoxin-Reductase aus Acinetobacter calcoaceticus, Wiss. Zeits. Karl-M arx-Univ. Leipzig, Math. Naturwiss. Reihe, 27:17.Google Scholar
  29. Claus, R., Asperger, O., and Kleber, H.-P., 1979, Eigenschaften der Rubredoxin-Reductase aus dem alkanassimilierenden Bakterienstamm Acinetobacter calcoaceticus, Zeits. Allg. Mikrobiol., 19:695.CrossRefGoogle Scholar
  30. Claus, R., Hädge, D., Asperger, O., Fiebig, H., and Kleber, H.-P., 1980a, Quantitative, immunologische Bestimmungsmethode für Rubredoxin in Bakterienrohextrakten von Acinetobacter calcoaceticus, Zeits. Allg. Mikrobiol., 20:95.CrossRefGoogle Scholar
  31. Claus, R., Asperger, O., and Kleber H.-P., 1980b, Influence of growth phase and carbon source on the content of rubredoxin in Acinetobacter calcoaceticus, Arch. Microbiol., 128:263.PubMedCrossRefGoogle Scholar
  32. Claus, R., Käppeli, O., and Fiechter, A., 1984, Possible role of extracellular membrane particles in hydrocarbon utilization by Acinetobacter calcoaceticus 69-V, J. Gen. Microbiol., 130:1035.Google Scholar
  33. Claus, R., Fischer, B.E., and Kleber, H.-P., 1985, An esterase as marker enzyme of the outer membrane of Acinetobacter calcoaceticus, J. Basic Microbiol., 25:299.CrossRefGoogle Scholar
  34. Coon, M.J., Autor, A.P., Boyer, R.F., Lode, E.T., and Strobel, H.W., 1973, On the mechanism of fatty acid, hydrocarbon, and drug hydroxylation in liver microsomal and bacterial enzymes systems, in “Oxidase and Related Redox Systems,” p.529, T.E. King, H.S. Mason, and M. Morrison, eds., University Park Press, Baltimore.Google Scholar
  35. Dalton, H., 1980, Oxidation of hydrocarbons by methane monooxygenase from a variety of microbes, Adv. Appl. Microbiol., 262:71.CrossRefGoogle Scholar
  36. Davis, J. B., 1967, “Petroleum Microbiology,” Elsevier Publishing Company, Amsterdam.Google Scholar
  37. Einsele, A., 1983, Biomass from higher n-alkanes, in “Biotechnology, vol.3,” p.44, H.J. Rehm, and G. Reed, eds., Verlag Chemie, Weinheim.Google Scholar
  38. Ensley, B.D., and Finnerty, W.R., 1980, Influence of growth substrates and oxygen on the electron transport system in Acinetobacter species HO1-N, J. Bacteriol., 142:859.PubMedGoogle Scholar
  39. Eremina, S.S., Asperger, O., and Kleber, H.-P., 1987, Cytochrome P-450 and the respiration activity of Acinetobacter calcoaceticus growing on n-nonane, Mikrobiologija, 5:764.Google Scholar
  40. Erickson, L.E., Nakahara, T., and Prokop, A., 1973, Growth in cultures with two liquid phases: hydrocarbon uptake and transport, Process Biochem., 10:9.Google Scholar
  41. Fewson, C.A., 1967, The growth and metabolic versatility of the Gramnegative bacterium NC1B 8250 (‘Vibrio 01’), J. Gen. Microbiol., 46:255.PubMedCrossRefGoogle Scholar
  42. Finnerty, W.R., 1977, The biochemistry of microbial alkane oxidation: new insights and perspectives, Trends Biochem. Sci., 2:73.CrossRefGoogle Scholar
  43. Finnerty, W.R., 1980, Physiology and biochemistry of bacterial phospholipid metabolism, Adv. Bacterial Physiol., 18:177.Google Scholar
  44. Finnerty, W.R., 1984, The application of hydrocarbon utilizing microorganisms for lipid production, in “Biotechnology for the oils and fats industry,” AOCS Monograph, 11:199.Google Scholar
  45. Finnerty, W.R., and Kallio, R.E., 1964, Origin of palmitic acid carbon in palmitate formed from hexadecane-1-14C and tetradecane-1-14C by Micrococcus cerificans, J. Bacteriol., 87:1261.PubMedGoogle Scholar
  46. Finnerty, W.R., and Singer, M.E., 1985, Membranes of hydrocarbonutilizing microorganisms, in “Organization of Procaryotic Cell Membranes,” p.1, B.K. Ghosh, ed., CRC-Press, Boca Raton.Google Scholar
  47. Finnerty, W.R., Hawtrey, E., and Kallio, R.E., 1962, Alkane-oxidizing Micrococci, Zeits. Allg. Mikrobiol., 2:169.CrossRefGoogle Scholar
  48. Fischer, B.E., 1986, Localization of hydrolytic enzymes in Acinetobacter calcoaceticus, J. Basic Microbiol., 26:9.PubMedCrossRefGoogle Scholar
  49. Fischer, B., Claus, R., and Kleber, H.-P., 1984, Isolation and characterization of the outer membrane of Acinetobacter calcoaceticus, J. Biotech., 1:111.CrossRefGoogle Scholar
  50. Fixter, L.M., and Fewson, C.A., 1974, The accumulation of waxes by Acinetobacter calcoaceticus NCIB 8250, Biochem. Soc. Trans., 2:944.Google Scholar
  51. Fixter, L.M., Nagi, M.N., McCormach, J.G., and Fewson, C.A., 1986, Structure, distribution and function of wax esters in Acinetobacter calcoaceticus, J. Gen. Microbiol., 132:3147.Google Scholar
  52. Gallagher, I.H.C. 1971, Occurrence of waxes in Acinetobacter, J. Gen. Microbiol., 68:245.PubMedCrossRefGoogle Scholar
  53. Goma, G., Pareilleux, A., and Durand, G., 1973, Cinetique de degradation des hydrocarbures par Candida lipolytica, Arch. Microbiol., 88:97.Google Scholar
  54. Grant, D.J.W., 1973, The degradative versatility, aryl-esterase activity and hydroxylation reactions of Acinetobacter lwoffii NCIB 10553, J. Appl. Microbiol., 36:47.CrossRefGoogle Scholar
  55. Grund, A., Shapiro, J., Fennewald, M., Bacha, P., Leahy, J., Markbreiter, K., Nieder, M., and Toepfer, M., 1975, Regulation of alkane oxidation in Pseudomonas putida, J. Bacteriol., 123:546.PubMedGoogle Scholar
  56. Haferburg, D., and Kleber, H.-P., 1982, Extrazellulare Lipase aus Acinetobacter calcoaceticus, Acta Biotech., 2:337.CrossRefGoogle Scholar
  57. Haferburg, D., and Kleber, H.-P., 1983, Regulation der extrazellulären Lipase aus einem alkanverwertenden Stamm von Acinetobacter, Acta Biotech., 3:185.CrossRefGoogle Scholar
  58. Haferburg, D., Asperger, O., Lohs, U., and Kleber, H.-P., 1983, Regulation der Alkanverwertung bei Acinetobacter calcoaceticus, Acta Biotech., 3:371.CrossRefGoogle Scholar
  59. Haferburg, D., Hommel, R., Claus, R., and Kleber, H.-P., 1986, Extracellular microbial lipids as biosurfactants, Adv. Biochem. Eng. Biotech., 33:53.Google Scholar
  60. Hankin, C., and Kollatukudy, P.E., 1968, Metabolism of a plant wax paraffin (n-nonacosane) by a soil bacterium (Micrococcus cerificans), J. Gen. Microbiol., 51:457.PubMedCrossRefGoogle Scholar
  61. Hiratsuka, J., Furukawa, T., and Noda, M., 1980, Microbial production of pristanol and pristanediol, Japan Kokai Koho, 80 00:065.Google Scholar
  62. Horisberger, M., 1977, Structure of the peptidoglycans of Moraxella glucidolytica and Moraxella lwoffi grown on hydrocarbons, Arch. Mikrobiol., 112:297.Google Scholar
  63. Jirausch, M., Asperger, O., and Kleber, H.-P., 1986, Alcohol oxidation by Acinetobacter calcoaceticus EB 104-a n-alkane-utilizing and cytochrome P-450-producing strain, J. Basic Microbiol., 26:351.PubMedCrossRefGoogle Scholar
  64. Juni, E., 1978, Genetics and physiology of Acinetobacter, Ann. Rev. Microbiol., 32:349.CrossRefGoogle Scholar
  65. Kaplan, N., and Rosenberg, E., 1982, Exopolysaccharide distribution of and bioemulsifier production by Acinetobacter calcoaceticus BD4 and BD413, Appl. Environ. Microbiol., 44:1335.PubMedGoogle Scholar
  66. Käppeli, O., and Finnerty, W.R., 1979, Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter, J. Bacteriol., 140:707.PubMedGoogle Scholar
  67. Käppeli, O., and Finnerty, W.R., 1980, Characteristics of hexadecane partition by the growth medium of Acinetobacter sp., Biotech. Bioeng., 22:495.CrossRefGoogle Scholar
  68. Kennedy, R.S., and Finnerty, W.R., 1975, Microbial assimilation of hydrocarbons. II. Intracytoplasmic membrane induction in Acinetobacter sp., Arch. Microbiol., 102:83.Google Scholar
  69. Kennedy, R.S., Finnerty, W.R., Sudarsanan, K., and Young, R.A., 1975, Microbial assimilation of hydrocarbons. I. The fine structure of a hydrocarbon oxidizing Acinetobacter sp., Arch. Microbiol., 102:75.PubMedCrossRefGoogle Scholar
  70. Kleber, H.-P., 1973, Repression des Malatenzyms durch n-Alkane in Acinetob acter calcoaceticus, Zeits. Allg. Mikrobiol., 13:467.CrossRefGoogle Scholar
  71. Kleber, H.-P., 1975, Hemmung des Malatenzyms aus Acinetobacter calcoaceticus durch Acetyl-CoA, Zeits. Allg. Mikrobiol., 15:19.CrossRefGoogle Scholar
  72. Kleber, H.-P., 1978, Regulation der Synthese und Aktivität von Enzymen des Citrat-und Glyoxylatzyklus in Acinetobacter calcoaceticus unter dem Einfluss der n-Alkanassimilation, Wiss. Zeits. Karl-Marx-Univ. Leipzig, Math. Naturwiss. Reihe, 27:55.Google Scholar
  73. Kleber, H.-P., and Aurich, H., 1973, Einfluss von n-Alkanen auf die Synthese der Enzyme des Glyoxylatzyklus in Acinetobacter calcoaceticus, Zeits. Allg. Mikrobiol., 13:473.CrossRefGoogle Scholar
  74. Kleber, H.-P., and Aurich, H., 1974, Verhalten der Enzyme des Citratzyklus wahrend der n-Alkan-Assimilation bei Acinetobacter calcoaceticus, Zeits. Allg. Mikrobiol., 14:575.CrossRefGoogle Scholar
  75. Kleber, H.-P., Schöpp, W., and Aurich, H., 1973, Verwertung von n-Alkanen durch einen Stamm von Acinetobacter calcoaceticus, Zeits. Allg. Mikrobiol., 13:445.CrossRefGoogle Scholar
  76. Kleber, H.-P., Claus, R., and Asperger, O., 1983, Enzymologie der n-Alkanoxidation bei Acinetobacter, Acta Biotech., 3:251.CrossRefGoogle Scholar
  77. Kleber, H.-P., Müller, R., and Asperger, O., 1985, Cytochrome P-450 in Acinetobacter: Occurrence, isolation and regulation, in “Environmental Regulation of Microbial Metabolism,” p.89, I.S. Kulaev, E.A. Dawes, and D.W. Tempest, eds., Academic Press, London.Google Scholar
  78. Klossek, P., Kirchner. M., and Kurth, J., 1985, Immobilisierung partikelgebundener Aldehyddehydrogenase aus Acinetobacter calcoaceticus EB 104, J. Basic Microbiol., 25:429.CrossRefGoogle Scholar
  79. Klug, M.J., and Markovetz, A.J., 1971, Utilization of aliphatic hydrocarbons by microorganisms, Adv. Microbial Physiol., 5:1.CrossRefGoogle Scholar
  80. Kollatukudy, P.E., and Hankin, C, 1968, Production of-haloesters from alkylhalides by Micrococcus cerificans, J. Bacteriol., 54:145.Google Scholar
  81. McCaman, R.E., and Finnerty, W.R., 1968, Biosynthesis of cytidine diphosphate-diglyceride by a particulate fraction from Micrococcus cerificans, J. Biol.Chem., 243:5074.PubMedGoogle Scholar
  82. McKenna, E.J., and Kallio, R.E., 1965, The biology of hydrocarbons, Ann. Rev. Microbiol., 19:183.CrossRefGoogle Scholar
  83. Makula, R., and Finnerty, W.R., 1968, Microbial assimilation of hydrocarbons. I. Fatty acid derived from normal alkanes, J. Bacteriol., 95:2102.PubMedGoogle Scholar
  84. Makula, R.A., and Finnerty, W.R., 1970, Microbial assimilation of hydrocarbons: Identification of phospholipids, J. Bacteriol., 103:348.PubMedGoogle Scholar
  85. Makula, R.A., and Finnerty, W.R., 1971, Microbial assimilation of hydrocarbons: Phospholipid metabolism, J. Bacteriol., 107:806.PubMedGoogle Scholar
  86. Makula, R.A., Lockwood, P.J., and Finnerty, W.R., 1975, Comparative analysis of the lipids of Acinetobacter species grown on hexadecane, J. Bacteriol., 121:250.PubMedGoogle Scholar
  87. Modrzakowski, M.C., and Finnerty, W.R., 1980, Metabolism of symmetrical dialkyl ethers by Acinetobacter species HO1-N, Arch. Microbiol., 126:285.CrossRefGoogle Scholar
  88. Modrzakowski, M.C., Makula, R.A., and Finnerty, W.R., 1977, Metabolism of the alkane analogue n-dioctyl ether by Acinetobacter species, J. Bacteriol., 131:92.PubMedGoogle Scholar
  89. Müller, H., and Voigt, B., 1982, Untersuchungen zur chemischen Zusammensetzung der Lipidfraktion von Acinetobacter calcoaceticus, Acta Biotech., 2:155.CrossRefGoogle Scholar
  90. Müller, H., Naumann, A., Claus, R., and Kleber, H.-P., 1983, Intracytoplasmic membrane induction by hexadecane in Acinetobacter calcoaceticus, Zeits. Allg. Mikrobiol., 23:645.CrossRefGoogle Scholar
  91. Müller, R., Asperger, O., and Kleber, H.-P., 1989, Purification of cytochrome P-450 from n-hexadecane-grown Acinetobacter calcoaceticus, Biomed. Biochim. Acta, 48:243.PubMedGoogle Scholar
  92. Neidleman, S.L., and Geigert, J., 1983, Long-chain wax esters, US Patent 4, 404, 283.Google Scholar
  93. Neufeld, R.J., and Zajic, J.E., 1984, The surface activity of Acinetobacter calcoaceticus sp. 2CA2, Biotech. Bioeng., 26:1108.CrossRefGoogle Scholar
  94. Ratledge, C., 1978, Degradation of aliphatic hydrocarbons, in “Developments in Biodegradation of Hydrocarbons,” p.1, R.J. Watkinson, ed., Applied Science Publishers, London.Google Scholar
  95. Rosenberg, E., 1986, Microbial surfactants, CRC Crit. Rev. Microbiol., 3:109.Google Scholar
  96. Rosenberg, E., and Kaplan, N., 1987, Surface-active properties of Acinetobacter exopolysaccharides, in “Bacterial Outer Membranes as Model Systems,” p.311, M. Inouye, ed., Wiley, New York.Google Scholar
  97. Rosenberg, E., Zuckerberg, A., Rubinovitz, C., and Gutnick, D.L., 1979, Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties, Appl. Environ. Microbiol., 37:409.PubMedGoogle Scholar
  98. Rosenberg, M., Bayer, E.A., DeLarea, J., and Rosenberg, E., 1982, Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane, Appl. Environ. Microbiol., 44:929.PubMedGoogle Scholar
  99. Rusansky, S., Avigad, R., Micheali, S., and Gutnick, D.L., 1987, Involvement of a plasmid in growth on and dispersion of crude oil by Acinetobacter calcoaceticus RA57, Appl. Environ. Microbiol., 53:1918.PubMedGoogle Scholar
  100. Sampson, K.L., and Finnerty, W.R., 1974, Regulation of fatty acid biosynthesis in the hydrocarbon-oxidizing microorganism, Acinetobacter sp., Arch. Microbiol., 99:203.CrossRefGoogle Scholar
  101. Scott, C.C.L., and Finnerty, W.R., 1976a, A comparative analysis of the ultra-structure of hydrocarbon-oxidizing microorganisms, J. Gen. Microbiol., 94:342.PubMedCrossRefGoogle Scholar
  102. Scott, C.C.L., and Finnerty, W.R., 1976b, Characterization of intracyto-plasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N, J. Bacteriol., 127:481.PubMedGoogle Scholar
  103. Scott, C.C.L., Makula, R.A., and Finnerty, W.R., 1976, Isolation and characterization of membranes from a hydrocarbon-oxidizing Acinetobacter sp., J. Bacteriol., 127:469.PubMedGoogle Scholar
  104. Shabtai, Y., and Gutnick, D.L., 1985, Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus, J. Bacteriol., 161:1176.PubMedGoogle Scholar
  105. Singer, M.E., and Finnerty, W.R., 1984a, Microbial metabolism of straightchain and branched alkanes, in “Petroleum microbiology,” p.1, R.M. Atlas, ed., Macmillan, New York.Google Scholar
  106. Singer, J.T., and Finnerty, W.R., 1984b, The genetics of hydrocarbonutilizing microorganisms, in: “Petroleum Microbiology,” p.299, R.M. Atlas, ed., Macmillan, New York.Google Scholar
  107. Singer, J.T., and Finnerty, W.R., 1984c, Insertional specificity of transposon Tn5 in Acinetobacter sp., J. Bacteriol., 157:607.PubMedGoogle Scholar
  108. Singer, M.E., and Finnerty, W.R., 1985a, Fatty aldehyde dehydrogenases in Acinetobacter species strain HO1-N: Role in hexadecane and hexadecanol metabolism, J. Bacteriol., 164:1011.PubMedGoogle Scholar
  109. Singer, M.E., and Finnerty, W.R., 1985b, Alcohol dehydrogenases in Acinetobacter species strain HO1-N: Role in hexadecane and hexadecanol metabolism, J. Bacteriol., 164:1017.PubMedGoogle Scholar
  110. Singer, M.E., Tyler, S.M., and Finnerty, W.R., 1985, Growth of Acinetobacter species HO1-N on n-hexadecanol: Physiological and ultrastructural characteristics, J. Bacteriol., 162:162.PubMedGoogle Scholar
  111. Sorger, H., and Aurich, H., 1978, Mikrobielle Aldehyddehydrogenasen und ihre Bedeutung für die Assimilation aliphatischer Kohlenwasserstoffe. Wiss. Zeits. Karl-Marx-Univ. Leipzig, Math. Naturwiss. Reihe, 27:35.Google Scholar
  112. Sorger, H., Aurich, H., Fricke, B., and Vorisek, J., 1986, Ultracytochemical localization of aldehyde dehydrogenase in Acinetobacter calcoaceticus, J. Basic Microbiol., 26:541.PubMedCrossRefGoogle Scholar
  113. Stevenson, D.P., Finnerty, W.R., and Kallio, R.E., 1962, Esters produced from n-heptadecane by Micrococcus cerificans, Biochem. Biophys. Res. Comm., 9:426.PubMedCrossRefGoogle Scholar
  114. Stewart, J.E., and Kallio, R.E., 1959, Bacterial hydrocarbon oxidation. II. Ester formation from alkanes, J. Bacteriol., 78:726.PubMedGoogle Scholar
  115. Stewart, J.E., Kallio, R.E., Stevenson, D.P., Jones, A.C., and Schissler, D.O., 1959, Bacterial hydrocarbon oxidation, I. Oxidation of n-hexadecane by a gram-negative coccus, J. Bacteriol., 78:441.PubMedGoogle Scholar
  116. Stewart, J.E., Finnerty, W.R., Kallio, R.E., and Stevenson, D.P., 1960, Esters from bacterial oxidation of olefins, Science, 132:1254.PubMedCrossRefGoogle Scholar
  117. Tauchert, H., Roy, M., Schopp, W., and Aurich, H., 1975, Pyridinnucleotidunabhangige Oxidation von langkettigen aliphatischen Alkoholen durch ein Enzym aus Acinetobacter calcoacetlcus, Zelts. Allg. Mlkroblol., 15:457.CrossRefGoogle Scholar
  118. Tauchert, H., Grunow, M., Harnisch, H., and Aurich, H., 1976, Reinigung und einige Eigenschaften der NADP+-abhangigen Alkoholdehydrogenase aus Acinetobacter calcoaceticus, Acta Biol. Med. German., 35:1267.PubMedGoogle Scholar
  119. Torregrossa, R.E., Makula, R.A., and Finnerty, W.R., 1977a, Characterization of lysocaroliolipin from Acinetobacter species HO1-N, J. Bacteriol., 131:486.PubMedGoogle Scholar
  120. Torregrossa, R.E., Makula, R.E., and Finnerty, W.R., 1977b, Outer membrane phospholipase A from Acinetobacter species HO1-N, J. Bacteriol., 131:493.PubMedGoogle Scholar
  121. Torregrossa, R.E., Makula, R.E., and Finnerty, W.R., 1978, Hydrolysis of phosphatidylglycerol by outer membrane phospholipase A from Acinetobacter species HO1-N, J. Bacteriol., 136:803.PubMedGoogle Scholar
  122. Vachon, V., McGarrity, J.T., Breuil, C., Armstrong, J.B., and Kushner, D.J., 1982, Cellular and extracellular lipids of Acinetobacter lwoffi during growth on hexadecane, Can. J. Microbiol., 28:660.CrossRefGoogle Scholar
  123. van der Linden, A.C., and Thijsse, G.J.E., 1965, The mechanism of microbial oxidation of hydrocarbons, Adv. Enzymol., 27:469.PubMedGoogle Scholar
  124. Wyndham, R.C., 1987, A screening method for cytochrome P-450 organic peroxidase activity and application to hydrocarbon-degrading bacterial populations, Can. J. Microbiol., 33:1.CrossRefGoogle Scholar
  125. Zuckerberg, A., Diver, A., Peeri, Z., Gutnick, D.L., and Rosenberg, E., 1979, Emulsifier of Arthrobacter RAG-1: chemical and physical properties, Appl. Environ. Microbiol., 37:414.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • O. Asperger
    • 1
  • H.-P. Kleber
    • 1
  1. 1.Sektion Biowissenschaften Bereich BiochemieKarl-Marx-Universität LeipzigLeipzigGermany

Personalised recommendations