Skip to main content

Energy Generation and the Glucose Dehydrogenase Pathway in Acinetobacter

  • Chapter
The Biology of Acinetobacter

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 57))

Abstract

Direct, non-phosphorylative, bacterial glucose oxidation was discovered nearly half a century ago (Barron and Friedemann, 1941; Lockwood et al., 1941). The possession of such a property was deduced from the fact that gluconic and ketogluconic acids were formed from glucose. The first step in this pathway is the oxidation of glucose at the C1 position to form 1,5-gluconolactone, which is hydrolysed by enzyme action or spontaneously to form gluconic acid; direct glucose oxidation can also occur at other positions, but these conversions are not relevant here. The reaction is catalysed by a glucose dehydrogenase, whereas glucose oxidase (EC 1.1.3.4) occurs only in yeasts and fungi. The enzyme belongs either to the category of NAD(P)-dependent dehydrogenases or to the dye-linked dehydrogenases. In the former case, NAD(P) is reduced in the reaction and then re-converted into NAD by the NADH dehydrogenase of the respiratory chain; in the latter case, the reduction equivalents on the cofactor are directly transferred in vivo to a component of the respiratory chain, and in vitro to an artificial dye. During the 1950’s, the latter type of glucose dehydrogenase was discovered in many Pseudomonas and Acetobacter strains, and also in Bacterium anitratum. It should be noted that the bacterial dehydrogenase discussed here is not the flavoprotein glucose dehydrogenase (EC 1.1.99.10) which has only been reported to occur in Aspergillus oryzae (Bak, 1967).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthony, C., and Zatman, L.J., 1967, The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27, Biochem. J., 104:960.

    PubMed  CAS  Google Scholar 

  • Asperger, O., Borneleit, P., and Kleber, H.-P., 1981, Untersuchungen zum Elektronentransport in Acinetobacter calcoaceticus, Ab. Akad. Wissen. DDR., 3:259.

    Google Scholar 

  • Bak, T.G., 1967, Studies on glucose dehydrogenase from Aspergillus oryzae. II Purification and physical and chemical properties, Biochim. Biophys. Acta, 139:277.

    Article  PubMed  CAS  Google Scholar 

  • Barron, E.S.G., and Friedemann, T.E., 1941, Studies on biological oxidations. XIV. Oxidations by microorganisms which do not ferment glucose, J. Biol. Chem., 137:593.

    CAS  Google Scholar 

  • Baumann, P., Doudoroff, M., and Stanier, R.Y., 1968, A study of the Moraxella group. II Oxidative-negative species (genus Acinetobacter), J. Bacteriol., 95:1520.

    PubMed  CAS  Google Scholar 

  • Beardmore-Gray, M., and Anthony, C., 1983, The absence of quinoprotein alcohol dehydrogenase in Acinetobacter calcoaceticus, J. Gen. Microbiol., 129:2979.

    PubMed  CAS  Google Scholar 

  • Beardmore-Gray, M., and Anthony, C., 1986, The oxidation of glucose by Acinetobacter calcoaceticus: interaction of the quinoprotein glucose dehydrogenase with the electron transport chain, J. Gen. Microbiol., 132:1257.

    PubMed  CAS  Google Scholar 

  • Bell. E.J., and Mams, A., 1966, Carbohydrate metabolism of Mima polymorpha I. Supplemental energy from glucose added to a growth medium, J. Bacteriol., 91:2223.

    PubMed  CAS  Google Scholar 

  • Bouvet, P.J.M., and Bouvet, O.M.M., 1989, Glucose dehydrogenase activity in Acinetobacter species, Res. Microbiol., 140:531.

    Article  PubMed  CAS  Google Scholar 

  • Bouvet, P.J.M., and Grimont, P.A.D., 1986, Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov., and emended escriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii, Int. J. Syst. Bacteriol., 36:228.

    CAS  Google Scholar 

  • Cleton-Jansen, A.M., Goosen, N., Odle, G., and van de Putte, P., 1988a, Nucleotide sequence of the gene coding for quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus, Nucl. Acid Res., 16:6228.

    Article  CAS  Google Scholar 

  • Cleton-Jansen, A.M., Goosen, N., Wenzel, T.J., and van de Putte, P., 1988b, Cloning of the gene encoding quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus: evidence for the presence of a second enzyme, J. Bacteriol., 170:2121.

    PubMed  CAS  Google Scholar 

  • Cleton-Jansen, A.M., Goosen, N., Vink, K., and van de Putte, P., 1989, Cloning, characterization and DNA sequencing of the gene encoding the Mr50,000 quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus, Mol. Gen. Genet., 217:430.

    Article  PubMed  CAS  Google Scholar 

  • Conlin, M., Forrest, H.S., and Bruice, T.C., 1985, Replacement of methoxatin by 4,7-phenanthroline-5,6-dione and the inability of other phenanthroline quinones, as well as 7,9-didecarboxymethoxatin, to serve as cofactors for the methoxatin-requiring glucose dehydrogenase of Acinetobacter calcoaceticus, Biochem. Biophys. Res. Comm., 131:564.

    Article  PubMed  CAS  Google Scholar 

  • Cook, A.M., and Fewson, C.A., 1973, Role of carbohydrates in the metabolism of Acinetobacter calcoaceticus, Biochim. Biophys. Acta, 320:214.

    Article  PubMed  CAS  Google Scholar 

  • D’Costa, E.J., Higgins, I.J., and Turner, A.P.F., 1986, Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor, Biosensors 2:71.

    Article  PubMed  Google Scholar 

  • De Bont, J.A.M., Dokter, P., van Schie, B.J., van Dijken, J.P., Frank, J., Duine, J.A., and Kuenen, J.G., 1984, Role of quinoprotein glucose dehydrogenase in gluconic acid production by Acinetobacter calcoaceticus, Ant. v. Leeuw., 50:76.

    Article  Google Scholar 

  • Dijkshoorn, L., Tjernberg, I., Pot, B., Ursing, M.J.F., and Kersters, K., 1990, Numerical analysis of cell envelope profiles of Acinetobacter strains classified by DNA-DNA hybridization, Syst. Appl. Microbiol., in press.

    Google Scholar 

  • Dokter, P., van Kleef, M.A.G., Frank, J., and Duine, J.A., 1985, Production of quinoprotein D-glucose dehydrogenase in the culture medium of Acinetobacter calcoaceticus, Enz. Microb. Tech., 7:613.

    Article  CAS  Google Scholar 

  • Dokter, P., Frank, J., and Duine, J.A., 1986, Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus LMD 79.41, Biochem. J., 239:163.

    PubMed  CAS  Google Scholar 

  • Dokter, P., Pronk, J.T., van Schie, B.J., van Dijken, J.P., and Duine, J.A., 1987, The in vivo and in vitro substrate specificity of Acinetobacter calcoaceticus LMD 79.41, FEMS Microbiol. Lett., 43:195.

    Article  CAS  Google Scholar 

  • Dokter, P., van Wielink, J.E., van Kleef, M.A.G., and Duine, J.A., 1988, Cytochrome-562 from Acinetobacter calcoaceticus LMD 79.41, Biochem. J., 254:131.

    PubMed  CAS  Google Scholar 

  • Dokter, P., van Wielink, J.E., Geerlof, A., Oltman, F., Stouthamer, A.H., and Duine, J.A., 1990, Purification and partial characterization of the membrane-bound haem-containing proteins from Acinetobacter calcoaceticus LMD.41, J. Gen. Microbiol., in press.

    Google Scholar 

  • Du Preez, J.C., Toerien, D.F., and Lategan, P.M., 1981, Growth parameters of Acinetobacter calcoaceticus on acetate and ethanol, Appl. Microbiol. Biotech., 13:45.

    Article  Google Scholar 

  • Duine, J.A., and Frank, J., 1981, Quinoprotein alcohol dehydrogenase from a non-methylotroph, Acinetobacter calcoaceticus, J. Gen. Microbiol., 122:201.

    CAS  Google Scholar 

  • Duine, J.A., Frank, J., and van Zeeland, J.K., 1979, Glucose dehydrogenase from Acinetobacter calcoaceticus: a quinoprotein, FEBS Lett., 108:443.

    Article  PubMed  CAS  Google Scholar 

  • Duine, J.A., Frank, J., and Verwiel, P.E.J., 1980, Structure and activity of the prosthetic group of methanol dehydrogenase, Eur. J. Biochem., 108:187.

    Article  PubMed  CAS  Google Scholar 

  • Duine, J.A., Frank, J., and van der Meer, R., 1982, Different forms of quinoprotein aldose-(glucose-) dehydrogenase in Acinetobacter calcoaceticus, Arch. Microbiol., 131:27.

    Article  PubMed  CAS  Google Scholar 

  • Duine, J.A., Frank, J., and Jongejan, J.A., 1983, Detection and determination of pyrroloquinoline quinone, the coenzyme of quinoproteins, Anal. Biochem., 133:239.

    Article  PubMed  CAS  Google Scholar 

  • Fewson, C.A., 1985, Growth yields and respiratory efficiency of Acinetobacter calcoaceticus, J. Gen. Microbiol., 131:865.

    CAS  Google Scholar 

  • Frank, J., van Krimpen, S.H., Verwiel, P.E.J., Jongejan, J.A., Mulder, A.C., and Duine, J.A., 1989, On the mechanism of inhibition of methanol dehydrogenase by cyclopropane-derived inhibitors, Eur. J. Biochem., 184:187.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, T., Strohdeicher, M., Hofhaus, G., Preis, D., Sahm, H., and Weiss, H., 1990, The same domain motif for ubiquinone reduction in mitochondrial or chloroplast NADH dehydrogenase and bacterial glucose dehydrogenase, FEBS Lett., 265:37.

    Article  PubMed  CAS  Google Scholar 

  • Geerlof, A., Dokter, P., van Wielink, J.E., and Duine, J.A., 1989, Haem-containing protein complexes of Acinetobacter calcoaceticus, in “PQQ and Quinoproteins,” p. 106, J.A. Jongejan, and J.A. Duine, eds., Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Geiger, O., and Görisch, H., 1986, Crystalline quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus, Biochemistry, 25:6043.

    Article  CAS  Google Scholar 

  • Geiger, O., and Görisch, H., 1989, Reversible thermal inactivation of the quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus, Biochem. J., 261:415.

    PubMed  CAS  Google Scholar 

  • Gommers, P.J.F., van Schie, B.J., van Dijken, J.P., and Kuenen, J.G., 1988, Biochemical limits to microbial growth yields: an analysis of mixed substrate utilization, Biotech. Bioeng., 32:86.

    Article  CAS  Google Scholar 

  • Goosen, N., Horsman, H.P.A., Huinen, R.G.M., de Groot, A., and van de Putte, P., 1989, Genes involved in the biosynthesis of PQQ from Acinetobacter calcoaceticus, in “PQQ and Quinoproteins,” p.169, J.A. Jongejan and J.A. Duine, eds., Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Hauge, J.G., 1960a, Purification and properties of glucose dehydrogenase and cytochrome b from Bacterium anitratum, Biochim. Biophys. Acta, 45:250.

    Article  PubMed  CAS  Google Scholar 

  • Hauge, J.G., 1960b, Kinetics and specificity of glucose dehydrogenase from Bacterium anitratum, Biochim. Biophys. Acta, 45:263.

    Article  PubMed  CAS  Google Scholar 

  • Hauge, J.G., 1961, Glucose dehydrogenase in bacteria: a comparative study, J. Bacteriol., 82:609.

    PubMed  CAS  Google Scholar 

  • Hauge, J.G., 1964, Glucose dehydrogenase of Bacterium anitratum: an enzyme with a novel prosthetic group, J. Biol. Chem., 239:3630.

    PubMed  CAS  Google Scholar 

  • Hauge, J.G., 1966a, Glucose dehydrogenase-particulate. I Pseudomonas species and Bacterium anitratum, Meth. Enzymol., 9:92.

    Article  CAS  Google Scholar 

  • Hauge, J.G., 1966b, Glucose dehydrogenase soluble. II Bacterium anitratum, Meth. Enzymol., 9:107.

    Article  CAS  Google Scholar 

  • Hauge, J.G., and Hallberg, P.A., 1964, Solubilization and properties of the structurally-bound glucose dehydrogenase of Bacterium anitratum, Biochim. Biophys. Acta, 81:251.

    CAS  Google Scholar 

  • Hauge, J.G., and Mürer, E.H., 1964, Studies on the nature of the prosthetic group of glucose dehydrogenase of Bacterium anitratum, Biochim. Biophys. Acta, 81:244.

    CAS  Google Scholar 

  • Hauge, J.G., Foulds, G., and Bentley, R., 1968, Kinetic isotope effects in enzymic oxidations of D-glucose-1-H and D-glucose-1-2H, Biochim. Biophys. Acta, 159:398.

    Article  PubMed  CAS  Google Scholar 

  • Hayaishi, O., 1966, Lactose dehydrogenase, Meth. Enzymol., 9:73.

    Article  CAS  Google Scholar 

  • Hommel, R., Götzrath, M., and Kleber, H-P., 1989, Enzyme production by growing cells of Acinetobacter in presence of sophoroselipid and Triton X-100, Acta Biotech., 5:461.

    Article  Google Scholar 

  • Imanaga, Y., 1989, Investigations on the active site of glucose dehydrogenase from Pseudomonas fluorescens, in “PQQ and Quinoproteins,” p.87, J.A. Jongejan and J.A. Duine, eds., Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Imanaga, Y., Hirano-Sawatake, Y., Arita-Hashimoto, Y., Iton-Shibouta, Y., and Katon-Semba, R., 1979, On the cofactor of glucose dehydrogenase of Pseudomonas fluorescens, Proc. Jap. Acad., 55B:264.

    Google Scholar 

  • Juni, E., 1972, Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus, J. Bacteriol., 122:917.

    Google Scholar 

  • Juni, E., 1978, Genetics and physiology of Acinetobacter, Ann. Rev. Microbiol., 32:349.

    Article  CAS  Google Scholar 

  • Kilty, C.G., Maruyama, K., and Forrest, H.S., 1982, Reconstitution of glucose dehydrogenase using synthetic methoxatin, Arch. Biochem. Biophys., 218:623.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, K., Tateishi, A., Nakano, F., Matsumoto, T., Morohoshi, T., Tanino, T., and Usui, T., 1986a, Generation of energy coupled with membrane-bound glucose dehydrogenase in Acinetobacter calcoaceticus, Agric. Biol. Chem., 50:1453.

    Article  CAS  Google Scholar 

  • Kitagawa, K., Tateishi, A., Nakano, F., Matsumoto, T., Morohoshi, T., Tanino, T., and Usui, T., 1986b, Sources of energy and energy coupling reactions of the active transport systems in Acinetobacter calcoaceticus, Agric. Biol. Chem., 50:2939.

    Article  CAS  Google Scholar 

  • Kleber, H.P., Haferburg, D., Asperger, O., Schmidt, M., and Aurich, H., 1984, Aufnahme und Oxidation von monosacchariden bei Acinetobacter calcoaceticus, Zeits. Allg. Mikrobiol., 24:691.

    Article  CAS  Google Scholar 

  • Lockwood, L.B., Tabenkin, B., and Ward, G.E., 1941, The production of gluconic acid and 2-ketogluconic acid from glucose by species of Pseudomonas and Phytomonas, J. Bacteriol., 42:51.

    PubMed  CAS  Google Scholar 

  • Matsushita, K., Shinagawa, E., Inone, T., Adachi, O., and Ameyama, M., 1986, Immunological evidence for two types of PQQ-dependent D-glucose dehydrogenases in bacterial membranes and the location of the enzyme in Escherichia coli, FEMS Microbiol. Lett., 37:141.

    CAS  Google Scholar 

  • Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., 1988, Quinoprotein D-glucose dehydrogenase in Acinetobacter calcoaceticus LMD 79.41: the membrane-bound enzyme is distinct from the soluble enzyme, FEMS Microbiol. Lett., 55:53.

    CAS  Google Scholar 

  • Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., 1989, Quinoprotein D-glucose dehydrogenase of the Acinetobacter calcoaceticus respiratory chain: membrane-bound and soluble forms are different molecular species, Biochemistry, 28:6276.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D.J., and Jones, C.W., 1973, Oxidative phosphorylation in bacteria which contain different cytochrome oxidases, Eur. J. Biochem., 36:144.

    Article  PubMed  CAS  Google Scholar 

  • Müller, R.H., and Babel, W., 1986, Glucose as an energy donor in acetate growing Acinetobacter calcoaceticus, Arch. Microbiol., 144:62.

    Article  Google Scholar 

  • Neijssel, O.M., 1987, PQQ-linked enzymes in enteric bacteria, Microbiol. Sci., 4:87.

    PubMed  CAS  Google Scholar 

  • Neijssel, O.M., Hommes, R.W.J., Postma, P.W., and Tempest, D.W., 1989, in “PQQ and Quinoproteins,” p.57, J.A. Jongejan, and J.A. Duine, eds., Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Niederpruem, D.J., and Doudoroff, M., 1965, Cofactor-dependent aldose dehydrogenase of Rhodopseudo monas spheroides, J. Bacteriol., 89:697.

    PubMed  CAS  Google Scholar 

  • Salisbury, S.A., Forrest, H.S., Cruse, W.B.T., and Kennard, O., 1979, A novel coenzyme from bacterial primary alcohol dehydrogenase, Nature, 280:843.

    Article  PubMed  CAS  Google Scholar 

  • Shinagawa, E., Matsushita, K., Nonobe, M., Adachi, O., Ameyama, M., Ohshiro, Y., Itoh, S., and Kitamura, Y., 1986, The 9-carboxylic acid group of pyrroloquinoline quinone, a novel prosthetic group, is essential in the formation of holo-enzyme of D-glucose dehydrogenase, Biochem. Biophys. Res. Comm., 139:1279.

    Article  PubMed  CAS  Google Scholar 

  • Strohdeicher, M., Bringer-Meyer, S., Neusz, B., van der Meer, R., Duine, J.A., and Sahm, H., 1989, Glucose dehydrogenase from Zymomonas mobilis: evidence for a quinoprotein, in “POO and Quinoproteins,” p.103, J.A. Jongejan and J.A. Duine, eds., Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • van Kleef, M.A.G., and Duine, J.A., 1988, Bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein, Arch. Microbiol., 150:32.

    Article  PubMed  Google Scholar 

  • van Kleef, M.A.G., and Duine, J.A., 1989, Factors relevant in bacterial pyrroloquinoline quinone production, Appl. Environ. Microbiol., 55:1209.

    PubMed  Google Scholar 

  • van Kleef, M.A.G., Dokter, P., Mulder, A.C., and Duine, J.A., 1987, Detection of the cofactor pyrroloquinoline quinone, Anal. Biochem., 162:143.

    Article  PubMed  Google Scholar 

  • van der Meer, R.A., Groen, B.W., van Kleef, M.A.G., Frank, J., Jongejan, J.A., and Duine, J.A., 1990, Isolation, preparation and assay of pyrroloquinoline quinone (PQQ), Meth. Enzymol. in press.

    Google Scholar 

  • van Schie, B.J., van Dijken, J.P., and Kuenen, J.G., 1984, Non-coordinated synthesis of glucose dehydrogenase and its prosthetic group POO in Acinetobacter and Pseudomonas species, FEMS Microbiol. Lett., 24:133.

    Article  Google Scholar 

  • van Schie, B.J., Hellingwerf, K.J., van Dijken, J.P., Elferink, M.G.L., van Dijl, J.M., Kuenen, J.G., and Konings, W.N., 1985, Energy transduction by electron transfer via a pyrroloquinoline quinone dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi), J. Bacteriol., 163:493.

    PubMed  Google Scholar 

  • van Schie, B.J., de Mooy, O.H., Linton, J.D., van Dijken, J.P., and Kuenen, J.G., 1987a, PQQ-dependent production of gluconic acid by Acinetobacter, Agrobacterium and Rhizobium species, J. Gen. Microbiol., 133:867.

    Google Scholar 

  • van Schie, B.J., Pronk, J.T., Hellingwerf, K.J., van Dijken, J.P., and Kuenen, J.G., 1987b, Glucose-dehydrogenase-mediated solute transport and ATP synthesis in Acinetobacter calcoaceticus, J. Gen. Microbiol., 133:3427.

    Google Scholar 

  • van Schie, B.J., Rouwenhorst, R.J., de Bont, J.A.M., van Dijken, J.P., and Kuenen, J.G., 1987c, An in vivo analysis of the energetics of aldose oxidation by Acinetobacter calcoaceticus, Appl. Microbiol. Biotech., 26:560.

    Article  Google Scholar 

  • van Schie, B.J., van Dijken, J.P., and Kuenen, J.G., 1988, Effects of growth rate and oxygen tension on glucose dehydrogenase activity in Acinetobacter calcoaceticus, Ant. v. Leeuw., 55:53.

    Article  Google Scholar 

  • van Schie, B.J., Rouwenhorst, R.J., van Dijken, J.P., and Kuenen, J.G., 1989, Selection of glucose assimilating variants of Acinetobacter calcoaceticus LMD 79.41 in chemostat culture, Ant. v. Leeuw., 55:39.

    Article  Google Scholar 

  • Vicente, M., and Canovas, J.L., 1973, Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants, J. Bacteriol., 116:908.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duine, J.A. (1991). Energy Generation and the Glucose Dehydrogenase Pathway in Acinetobacter . In: Towner, K.J., Bergogne-Bérézin, E., Fewson, C.A. (eds) The Biology of Acinetobacter . Federation of European Microbiological Societies Symposium Series, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3553-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3553-3_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3555-7

  • Online ISBN: 978-1-4899-3553-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics