Advertisement

Detection and Control of Particles in Vacuum Environments for Semiconductor Processing

  • T. C. Smith

Abstract

In VLSI and ULSI wafer processing areas, the detection and control of particles in vacuum processing equipment is crucial for cost-effective manufacturing. This is true because of stringent requirements for low defectivity in order to achieve realistic yields and because more than half the operations are performed in vacuum environments. Sources of particles and the mechanisms of transferring them in vacuum are reviewed, along with the special problems related to each of the various processes. Comparisons are made of the equipment configurations, modes of operation, gas flows, operating pressures, pumping and venting cycles, and important processing parameters. Results of particle contamination studies in some of these vacuum systems are discussed.

Keywords

Particle Count Rapid Thermal Processing Wafer Fabrication Contamination Control Particle Contamination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Bowling and G. B. Larrabee, Particle control for semiconductor processing in vacuum systems, Proceedings 1986 Microcontamination Conference, p. 161.Google Scholar
  2. 2.
    T. Hattori, Total contamination control for ULSI wafer fabrication, Microelectronic Manuf. and Test., 31 (April 1988).Google Scholar
  3. 3.
    T. Ohmi, What’s the contamination control target in ULSI manufacturing?, Proceedings 1988 Microcontamination Conference, p. 55.Google Scholar
  4. 4.
    T. Seidel and K. Dillenbeck, Contamination in vacuum, paper presented at Semicon East, Boston, MA, Sept. 1989.Google Scholar
  5. 5.
    D. W. Cooper, Paniculate contamination and microelectronics manufacturing: An introduction, Aerosol Sci. Technol., 5, 287 (1986).CrossRefGoogle Scholar
  6. 6.
    C. M. Osburn, R. P. Donovan, H. Berger, and G. W. Jones, The effects of contamination on semiconductor manufacturing yield, J. Environ. Sci., 31(2), 45 (1988).Google Scholar
  7. 7.
    H. S. Nagaraj, B. L. Owens, and R. J. Miller, Paniculate generation in devices used in clean manufacturing, in “Particles in Gases and Liquids 1: Detection, Characterization, and Control,” K. L. Mittal, editor, pp. 283–293, Plenum Press, New York, 1989.CrossRefGoogle Scholar
  8. 8.
    S. D. Cheung, In-situ monitoring of paniculate contamination in integrated circuit process equipment, ibid, pp. 167-173.Google Scholar
  9. 9.
    P. G. Borden, J. Munson, and D. W. Bartelson, A real-time fallout monitor for 5-250 micrometer particles, ibid, pp. 175-184.Google Scholar
  10. 10.
    J. F. O’Hanlon, Advances in vacuum contamination control for electronic materials processing, J. Vac. Sci. TechnoL, A5(4), 2067 (1987).Google Scholar
  11. 11.
    J. F. O’Hanlon, Contamination reduction in vacuum processing systems, J. Vac. Sci. TechnoL, A7(3) 2500 (1989).Google Scholar
  12. 12.
    T. C. Smith, Photoresist problems and particle contamination, in “Ion Implantation: Science and Technology,” 2nd edition, J. F. Ziegler, editor, p. 345, Academic Press, New York, 1988.CrossRefGoogle Scholar
  13. 13.
    P. G. Borden, Y. Baron, and B. McGinley, Monitoring particles in vacuum-process equipment, Microcontamination, 5(10), 30 (1987).Google Scholar
  14. 14.
    P. G. Borden and L. A. Larson, Benefits of real-time, in-situ particle monitoring in production medium current implantation, Proc. of IEEE International Semiconductor Manufacturing Science Symposium, May 22, 1989, p.61.Google Scholar
  15. 15.
    R. Shasteen, H. Boisselle, M. Ishaq, and E. McGuire, Inline defect control on a 1-Mb DRAM production line, Proceedings 1988 Microcontamination Conference, p. 13.Google Scholar
  16. 16.
    J. F. O’Hanlon and D. B. Fraser, American Vacuum Society recommended practices for pumping hazardous gases, J. Vac. Sci. TechnoL, A6(3), 1226 (1988).Google Scholar
  17. 17.
    R. J. Miller, D. W. Cooper, H. S. Nagaraj, B. L. Owens, M. H. Peters, H. L. Wolfe, and J. J. Wu, Mechanisms of contaminant particle production, migration, and adhesion, J. Vac. Sci. TechnoL, A6(3), 2097 (1988).Google Scholar
  18. 18.
    W. Kroll, Contamination prevention and protection for process gases, Solid State TechnoL, 220 (March 1984).Google Scholar
  19. 19.
    S. D. Cheung and D. A. Hope, In-situ monitoring of paticulate contamination in integrated circuit process equipment, Proc. 34th Annual Technical Meeting of Institute of Environmental Sciences, (1988), p. 524.Google Scholar
  20. 20.
    T. Hattori and S. Koyata, Detection and identification of process equipment generated particles for yield improvement, Proceedings 1988 Microcontamination Conference, p. 1.Google Scholar
  21. 21.
    R. A. Bowling, An analysis of particle adhesion on semiconductor surfaces, J. Electrochem. Soc., 132(9), 2208 (1985).CrossRefGoogle Scholar
  22. 22A.
    K. L. Mittal, editor, “Particles on Surfaces 1: Detection, Adhesion, and Removal,” Plenum Press, New York, 1988.Google Scholar
  23. 22B.
    K. L. Mittal, editor, “Particles on Surfaces 2: Detection, Adhesion, and Removal,” Plenum Press, New York, 1989.Google Scholar
  24. 23.
    T. C. Smith, Particle contamination in ion implanters, Nuclear Instrum. Methods in Phys. Res., B37/38, 486 (1989).CrossRefGoogle Scholar
  25. 24.
    M. H. Hablanian, If you rough slowly, do you get a clean vacuum chamber?, Res. Dev., 81 (April 1989).Google Scholar
  26. 25.
    B. Fishkin and E. J. Baker, Particle performance evaluation of CVD and epitaxial processes and equipment, Proc. 34th Annual Technical Meeting of Institute of Environmental Sciences, (1988), p. 517.Google Scholar
  27. 26.
    K. G. Hays, K. L. Bishop, and T. R. White, Particle reduction investigation of a LPCVD tungsten reactor, Proceedings 1987 Microcontamination Conference, p. 1.Google Scholar
  28. 27.
    D. G. Hemmes, Microcontamination reduction in PECVD systems — Part 1, Semiconductor Intl., 90 (May 1987).Google Scholar
  29. 28.
    D. G. Hemmes, Microcontamination reduction in PECVD Systems — Part 2, Semiconductor Intl., 98 (June 1987).Google Scholar
  30. 29.
    E. J. Baker and B. Fishkin, Particle control in process equipment: A case study, Microcontamination, 4(9), 52 (1986).Google Scholar
  31. 30.
    P. G. Borden and J. Gregg, Measurement and control of particle levels inside vacuum processing equipment, Proc. 35th Annual Technical Meeting of Institute of Environmental Sciences, (1989), p. 325.Google Scholar
  32. 31.
    S. DeOrnellas, A. Cofer, and M. BenDor, Particulate contamination in dry etch system design, Proceedings 1988 Microcontamination Conference, p. 66.Google Scholar
  33. 32.
    R. Lachenbruch, O. Gomez, and B. Chapman, Control of particulate emissions from plasma etching systems, Proceedings of 12th Annual TEGAL Plasma Seminar, (1986), P.11.Google Scholar
  34. 33.
    P. G. Borden and W. Knodle, Process control through the measurement of particle flux to wafer surfaces in vacuum process equipment, Proc. 34th Annual Technical Meeting of Institute of Environmental Sciences, (1988), p. 429.Google Scholar
  35. 34.
    W. Weisenberger, Particle control in high-current ion implanters, Semiconductor Intl., 188 (May 1988).Google Scholar
  36. 35.
    J. Strain, S. Moffatt, and M. Current, Characterization and reduction of particle contamination in ion implantation processing, Proceedings 1988 Microcontamination Conference, p. 42.Google Scholar
  37. 36.
    M. I. Current and L. A. Larson, Ultra-pure processing: A key challenge for ion implantation processing for fabrication of ULSI devices, paper presented at the Materials Research Society Symposium, San Diego, CA, April, 1989.Google Scholar
  38. 37.
    D. Chen, T. Seidel, S. Belinski, and S. Hackwood, Dynamic paniculate characterization of a vacuum load lock system, J. Vac. Sci. Technol., A7(5), 3105 (1989).Google Scholar
  39. 38.
    M. E. Mack, D. K. Stone, J. A. Jost, and P. Sferlazzo, Prevention of aerodynamic particle transport in air handling wafer processing equipment, paper presented at Semicon East, Boston, MA, Sept. 1989.Google Scholar
  40. 39.
    G. S. Selwyn, J. Singh, and R. S. Bennett, In-situ laser diagnostic studies of plasmagenerated particulate contamination, J. Vac. Sci. Technol., A7(4), 2758 (1989).Google Scholar
  41. 40.
    B. J. Tullis, Particle contamination by process equipment, in “Handbook of Contamination Control in Microelectronics,” D. L. Tolliver, editor, p. 410, Noyes Publications, Park Ridge, NJ, 1988.Google Scholar
  42. 41.
    R. A. Bowling, G. B. Larrabee and W. G. Fisher, Status and needs of in-situ real-time process particle detection, Proc. 34th Annual Technical Meeting of Institute of Environmental Sciences, (1988), p. 508.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • T. C. Smith
    • 1
  1. 1.Motorola SemiconductorAdvanced Technology CenterMesaUSA

Personalised recommendations