Advertisement

Sterol Metabolism in Aspergillus Species

  • Michael A. Gealt
  • Brian E. Shapiro
  • Theresa A. Lindley
  • Joseph L. Evans

Abstract

The functional complexity of the eukaryotic membrane requires a similar structural complexity. One of the major components of the membrane is the sterol molecule, such as cholesterol (in animals), sitosterol (in plants), and ergosterol (in fungi). These neutral lipid molecules act not only as a bulk lipid, but also act to stabilize the fluidity of the membrane structure, thus allowing for protein function under conditions such as high or low temperature under which the phospholipid hydrocarbon chains might either gel or become too fluid for proper physiological functioning.

Keywords

High Performance Liquid Chromatography Aspergillus Nidulans Sterol Ester Free Sterol Steryl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anisimov, M. M., Shcheglov, V. V., Stringina, L. I., Chetyrina, N. S., Uvarova, N. I., Oshitok, G. I., Alad’ina, N. G., Vecherko, L. P., Zorina, A. D., Matyukjina, L. G. and Saltykova, I. A., 1979, Chemical structure and antifungal activity of a number of triterpenoids. Izve. stiya Akademii Nauk SSSR. Seriya Biologicheskaya. No. 4: 570.Google Scholar
  2. Axelrod, D. E., Gealt, M. A., and Pastushok, M., 1973, Gene control of developmental competence in Aspergillus nidulans, Developmental Biology. 34:9.PubMedCrossRefGoogle Scholar
  3. Bailey, R. B. and Parks, L. w. (1975). Yeast sterol esters and their relationship to the growth of yeast. J. Bacteriol., 124:606.PubMedGoogle Scholar
  4. Bartlett, K., and Mercer, E. I., 1974., Variations in the levels and composition of the sterols and sterol esters in Phycomyces blakesleeanus with age of culture. Phytochem., 13:1115.CrossRefGoogle Scholar
  5. Barton, D. H. R., and Bruun, T., 1951. A new sterol from a strain of Aspergillus niger, J. Chem. Soc., 2728.Google Scholar
  6. Basson, M., Thorsness, M., and Rine, J., 1986, Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase, Proc. Natl. Acad. Sci. USA. 83:5563.PubMedCrossRefGoogle Scholar
  7. Bennett, J. W., and Christensen, S. B., 1983, New perspectives on aflatoxin biosynthesis. Adv. in Appl. Microbiol., 29:53.CrossRefGoogle Scholar
  8. Berry, D. R., Chmiel, A., and Al Obaidi, Z., 1977, Citric acid production by A. niger, in: “Genetics and Physiology of Aspergillus,” J. E. Smith and J. A. Pateman, eds., Academic Press: New York.Google Scholar
  9. Billheimer, J., 1985, Cholesterol acyltransferase, Methods in Enzymology. 111:286PubMedCrossRefGoogle Scholar
  10. Billheimer, J., Avart, S., and Milani, B., 1983, Separation of steryl esters by reversed-phase liquid Chromatograph, J. Lipid Res., 24:1646.PubMedGoogle Scholar
  11. Brown, M., and Goldstein, J., 1974, Suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase and inhibition of growth of human fibroblasts by 7-ketocholesterol, J. Biol. Chem., 249:7306.PubMedGoogle Scholar
  12. Buchanan, R. L., Harry, M. A., and Gealt, M. A., 1983, Caffeine inhibition of sterigmatocystin, citrinin, and patulin production, J. Food Sci., 48:1226.CrossRefGoogle Scholar
  13. Budzikiewicz, H., Djerassi, C., and Williams, D. H., 1964, “Structure elucidation of natural products by mass spectrometry. Vol. II: Steroids, Terpenoids, Sugars, and Miscellaneous Classes,” Holden-Day, San Francisco.Google Scholar
  14. Chattopadhyay, P., Banerjee, S. K., Sen, K., Chakrabarti, P., 1985, Lipid profiles of Aspergillus niger and its unsaturated fatty acid auxotroph, UFA2. Can. J. Microbiol., 31:352.CrossRefGoogle Scholar
  15. Dahl, C., Biemann, H-P. and Dahl, J., 1987, A protein kinase antigenically related to pp60v-src possibly involved in yeast cell cycle control: Positive in vivo regulation by sterol. Proc. Natl. Acad. Sci. USA. 84: 4012.PubMedCrossRefGoogle Scholar
  16. Demain, A. L., 1981, Industrial microbiology, Science. 214:987.PubMedCrossRefGoogle Scholar
  17. Elliott, C. G., Knights, B. A., and Freeland, J. A., 1974, Sterols of Neurospora crassa and the pattern of their binding during the growth cycle. Biochim. Biophys. Acta, 360: 339.PubMedCrossRefGoogle Scholar
  18. Evans, J. L., and Gealt, M. A., 1985, The sterols of growth and stationary phases of Aspergillus nidulans cultures. J. Gen. Microbiol., 131:279.PubMedGoogle Scholar
  19. Evans, J. L., Moclock, M., and Gealt, M. A., 1986, The fatty acid composition of the conidia and mycelia of the fungus Aspergillus nidulans, Can. J. Microbiol., 32:179.PubMedCrossRefGoogle Scholar
  20. Fujino, Y., and Ohnishi, M., 1979, Characterization and composition of sterols in free and esterified sterol fractions of Aspergillus oryzae, Lipids, 14:663.CrossRefGoogle Scholar
  21. Gealt, M. A. and Axelrod, D. E., 1974, Coordinate regulation of enzyme inducibility and developmental competence in Aspergillus nidulans, Develop. Biol., 41:224.PubMedCrossRefGoogle Scholar
  22. Gealt, M. A., 1983, Isolation of β-amyrin from the fungus Aspergillus nidulans, J, Gen. Microbiol., 129:543.Google Scholar
  23. Gealt, M. A., Adler, J.H., and Nes, W. R., 1981, The sterols and fatty acids from purified flagella of Chlamydomonas reinhardi. Lipids, 16:133.CrossRefGoogle Scholar
  24. Goulston, G., Mercer, E., and Goad, L., 1975, The identification of 24-methylene-24, 25-dihydrolanosterol and other possible ergosterol precursors in Phycomyces blakesleeanus and Agaricus campestris, Biochem., 14:457.Google Scholar
  25. Hall, N. E. L., and Axelrod, D. E., 1977, Interference of cellular ferric ions with DNA extraction and the application to methods of DNA determination. Anal. Biochem., 79:425.PubMedCrossRefGoogle Scholar
  26. Hendrix, J. W., 1970, Sterols in growth and reproduction of fungi, Ann. Rev. Phytopathol., 8:111.CrossRefGoogle Scholar
  27. Kim, S. J., and Kwon-Chung, K. J., 1974, Polyene-resistant mutants of Aspergillus fennelliae: sterol content and genetics. Antimicrob. Agents. Chemother., 6:102.PubMedCrossRefGoogle Scholar
  28. Kurtz, M. B., 1980, Regulation of fructose transport during growth of Aspergillus nidulans. J. Gen. Microbiol., 118:389.Google Scholar
  29. Kurtz, M. B., and Champe, S. P., 1979, Genetic control of transport loss during development of Aspergillus nidulans, Develop. Biol., 70:82.PubMedCrossRefGoogle Scholar
  30. Malik, V. S., 1980, Microbial secondary metabolism. Tr. Biochem. Sci., 5:68.CrossRefGoogle Scholar
  31. Nes, W. R., and McKean, M. L., 1977, “Biochemistry of Steroids and Other Isopentenoids,” University Park Press, Baltimore.Google Scholar
  32. Parks, L. W., 1978. Metabolism of sterols in yeast. CRC Crit. Rev. Microbiol., 6:301.PubMedCrossRefGoogle Scholar
  33. Parks, L. W., Rodriguez, R. J., and Low, C., 1986, An essential fungal growth factor derived from ergosertol: A new end product of sterol biosynthesis in fungi? Lipids, 21:89.PubMedCrossRefGoogle Scholar
  34. Rambo, G. W., and Bean, G. A., 1974, Sterols and fatty acids of aflatoxin and non-aflatoxin producing isolates of Aspergillus. Phytochem., 13:195.CrossRefGoogle Scholar
  35. Shapiro, B. E., and Gealt, M. A., 1982, Ergosterol and lanosterol from Aspergillus nidulans. J. Gen. Microbiol., 128:1053.PubMedGoogle Scholar
  36. Shcheglov, V. V., and Anisimov, M. M., 1979, Change in the biosynthesis of sterols and fatty acids during growth of a culture of Saccharomyces carlsbergensis, Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya, No. 3: 462.Google Scholar
  37. Sherald, J. L., and Sisler, H. D., 1975, Antifungal mode of action of triforine. Pest. Biochem. Physiol., 5:477.CrossRefGoogle Scholar
  38. Taketani, S., Nagai, J., and Katsuki, H., 1978, Quantitative aspects of free and esterified sterols in Saccharomyces cerevisiae under various conditions. Biochim. Biophys. Acta, 528: 416.PubMedCrossRefGoogle Scholar
  39. Taylor, F. R., and Parks, L. W., 1978, Metabolic interconversion of free sterols and steryl esters in Saccharomyces cerevisiae. J. Bacteriol., 136:531.PubMedGoogle Scholar
  40. Van Etten, J. L., and Gottlieb, D., 1965, Biochemical changes during the growth of fungi. II. Ergosterol and fatty acids of Penicillium atrovenetum, J. Bacteriol., 80:409.Google Scholar
  41. Weete, J. D., 1980, “Lipid Biochemistry of Fungi and Other Organisms,” Plenum Press, New York.CrossRefGoogle Scholar
  42. Weete, J. D., and Laseter, J. L., 1974, Distribution of sterols in the fungi. I. Fungal spores, Lipids, 9:575.PubMedCrossRefGoogle Scholar
  43. Weinberg, E., 1977, “Minerals and Microorganisms,” Dekker, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Michael A. Gealt
    • 1
  • Brian E. Shapiro
    • 1
    • 2
  • Theresa A. Lindley
    • 1
    • 3
  • Joseph L. Evans
    • 1
    • 4
  1. 1.Department of Bioscience and BiotechnologyDrexel UniversityPhiladelphiaUSA
  2. 2.Dept. of AnesthesiologyHahnemann University HospitalPhiladelphiaUSA
  3. 3.Dept. of MicrobiologyMedical College of PennsylvaniaPhiladelphiaUSA
  4. 4.Dept. of MedicineDartmouth University School of MedicineHanoverUSA

Personalised recommendations