Skip to main content

New Theoretical Methods for Fractal Growth

  • Chapter
Fractals’ Physical Origin and Properties

Part of the book series: Ettore Majorana International Science Series ((EMISS))

Abstract

In order to understand the physical origin of fractal structures the first step is to formulate models of fractal growth based on physical mechanisms like the Diffusion Limited Aggregation and the more General Dielectric Breakdown Model. They are based on a simple iterative process governed by the Laplace equation and a stochastic field and they give rise to patterns that spontaneously evolve into random fractal structures of great complexity. In addition one would like to achieve a theoretical understanding of these models similar to that provided by the Renormalization Group for Ising-type models. Recently we have introduced a new theoretical framework for intrinsically critical growth models. This method is based on a Fixed Scale Transformation (with respect to the dynamical evolution) that defines a functional iteration for the distribution of elementary configurations that appear in a coarse graining process. This allows to include screening effects in terms of convergent series and to describe the intrinsic fluctuations of the boundary conditions. This approach clarifies the origin of fractal structures in these models and provides a systematic method for the calculation of the fractal dimension and the multifractal properties. It also makes clear why the usual renormalization schemes are not very suitable for these problems. Here we describe the basic ideas of this new approach and report about recent developments including the application to the fractal dimension of the percolating cluster interpreted as a problem of fractal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.B. Mandelbrot, “The Fractal Geometry of Nature”, Freeman, New York (1983).

    Google Scholar 

  2. L. Pietronero and E. Tosatti Eds. “Fractals in Physics”, North-Holland, Amsterdam, New York (1986).

    Google Scholar 

  3. H.E. Stanley and N. Ostrowsky Eds. “On Growth and Form”, Nijhoff, Dordrecht (1986).

    Google Scholar 

  4. See for example: D.J. Amit, “Field Theory, the Renormalization Group and Critical Phenomena”, McGraw Hill Int., New York (1978).

    Google Scholar 

  5. T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  CAS  Google Scholar 

  6. L. Niemeyer, L. Pietronero and H.J. Wiesmann, Phys. Rev. Lett. 52, 1033 (1984).

    Article  Google Scholar 

  7. L. Pietronero and H.J. Wiesmann, J. Stat. Phys. 36, 909 (1984).

    Article  Google Scholar 

  8. H.E. Stanley, Phil. Mag. B 56, 665 (1987).

    Article  CAS  Google Scholar 

  9. L.P. Kadanoff, Physics Today, p.6 (Feb. 1986).

    Google Scholar 

  10. T. Nagatani, J. Phys. A 20, L381 (1987); Phys. Rev. A36, 5812 (1988).

    Article  CAS  Google Scholar 

  11. X.R. Wang, Y. Shapir and M. Rubinstein, Phys. Lett. A118, 274 (1989).

    Article  Google Scholar 

  12. A. Stella, to be published.

    Google Scholar 

  13. L. Pietronero, A. Erzan and C. Evertsz, Phys. Rev. Lett. 61, 861 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. L. Pietronero, A. Erzan and C. Evertsz, Physica A 151, 207 (1988).

    Article  Google Scholar 

  15. C. Evertsz, “Laplacian Fractals”, Thesis, Univ. of Groningen (1989), unpublished.

    Google Scholar 

  16. G. Paladin and A. Vulpiani, Phys. Rep. 156, 147 (1987).

    Article  Google Scholar 

  17. A.P. Siebesma, R.R. Tremblay, A. Erzan and L. Pietronero, Physica A 156, 613 (1989).

    Article  Google Scholar 

  18. A.P. Siebesma and R.R. Tremblay, Phys. Rev. B, in print.

    Google Scholar 

  19. A. Vespignani and L. Pietronero, to be published.

    Google Scholar 

  20. M. Marsili and L. Pietronero, to be published.

    Google Scholar 

  21. J. Nittmann and H.E. Stanley, Nature 321, 663 (1986).

    Article  Google Scholar 

  22. R. Blumenfeld and A. Aharony, Phys. Rev. Lett. 62, 2977 (1989).

    Article  PubMed  Google Scholar 

  23. See for example: D. Stauffer, “Introduction to Percolation Theory”, Taylor and Francis, London-Philadelphia (1985).

    Book  Google Scholar 

  24. L. Pietronero and A. Stella, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pietronero, L., Erzan, A., Evertsz, C. (1989). New Theoretical Methods for Fractal Growth. In: Pietronero, L. (eds) Fractals’ Physical Origin and Properties. Ettore Majorana International Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3499-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3499-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3501-4

  • Online ISBN: 978-1-4899-3499-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics