Skip to main content

Superlocalization, Anomalous Diffusion and Self Avoiding Walks on Fractals

  • Chapter
Book cover Fractals’ Physical Origin and Properties

Part of the book series: Ettore Majorana International Science Series ((EMISS))

  • 181 Accesses

Abstract

Many physical systems exhibit fractal geometry, at least over some range of length scales.1 Much of the recent experimental and theoretical interest in such systems concentrated on alloys near the percolation threshold, Pc.2,3 At pc, such alloys are self-similar, and their properties exhibit an anomalous power law dependence on their linear size. Diferent physical properties turn out to depend on different subsets of sites (or bonds) on the percolating cluster, and hence require knowledge of a plenitude of fractal dimensionalities.4 For example, the average total mass of the spanning cluster between two points a distance L apart scales as M∼LD, and the fractal dimensionality D equals 91/48,∼2.5,∼3.2 and 4 for percolation clusters in dimensions d=2,3,4 and ≥ 6. The mass of the corresponding backbone (without the “dangling” bonds) has fractal dimensionalities DB∼1.62, 1.83, 1.94 and 2, and that of the minimal path 5 (along bonds on the backbone) has dmin ≃ 1.13, 1.36, 1.62 and 2. Similar fractal properties apply to other physical structures, e.g. lattice animals,6 where dmin=DB ≃ 1.19, 1.33, 1.47 and 2 in d= 2,3,4 and ≥ 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. B. Mandelbrot, “The Fractal Geometry of Nature,” Freeman, San Francisco (1982).

    Google Scholar 

  2. D. Stauffer, “Introduction to Percolation Theory,” Taylor and Francis, London (1985).

    Book  Google Scholar 

  3. A. Aharony, in “Directions in Condensed Matter Physics,” G. Grinstein and G. Mazenko, editors, World Scientific, Singapore (1986), p. 1.

    Google Scholar 

  4. A. Aharony, in “Advances on Phase Transitions and Disorder Phenomena”, G. Busiello, L. de Cesare, F. Mancini and M. Marinaro, editors, World Scientific, Singapore (1987), p. 185.

    Google Scholar 

  5. S. Havlin and R. Nossal, J. Phys. A 17: L427 (1984).

    Article  Google Scholar 

  6. S. Havlin, Z. V. Djordjevic, I. Majid, H. E. Stanley and G. H. Weiss, Phys. Rev. Lett. 53: 178 (1984).

    Article  CAS  Google Scholar 

  7. Y. Gefen, A. Aharony and S. Alexander, Phys. Rev. Lett. 50: 77 (1983).

    Article  Google Scholar 

  8. S. Alexander and R. Orbach, J. Phys. (Paris) Lett. 43: 625 (1982).

    Article  Google Scholar 

  9. R. Ranimai and G. Toulouse, J. Phys. (Paris) Lett. 44: 13 (1983).

    Google Scholar 

  10. For a recent review, see S. Havlin and D. Ben Avraham, Adv. Phys. 36: 695 (1987).

    Article  CAS  Google Scholar 

  11. A. B. Harris and A. Aharony, Europhys. Lett. 4: 1355 (1987).

    Article  CAS  Google Scholar 

  12. Y. E. Lévy and B. Souillard, Europhys. Lett. 4: 233 (1987).

    Article  Google Scholar 

  13. G. Deutscher, Y. E. Lévy and B. Souillard, Europhys. Lett. 4: 577 (1987).

    Article  CAS  Google Scholar 

  14. A. Aharony and B. Harris, J. Stat. Phys. 59: 1091 (1989).

    Article  Google Scholar 

  15. J. P. Bouchaud and A. Georges, Phys. Rev. B39: 2846 (1989).

    Article  Google Scholar 

  16. O. Entin-Wohlman, S. Alexander and R. Orbach, Phys. Rev. B32: 8007 (1985).

    Article  Google Scholar 

  17. J. R. Banavar and J. Willemsen, Phys. Rev. B30: 6778 (1984)

    Article  Google Scholar 

  18. B. O’shanghnessy and I. Procaccia, Phys. Rev. A32: 3073 (1985).

    Article  Google Scholar 

  19. A. Aharony, S. Alexander, O. Entin-Wohlman and R. Orbach, Phys. Rev. Lett. 55: 132 (1987).

    Article  Google Scholar 

  20. A. Aharony and A. B. Harris, Proceedings of STATPHYS 17, Physica A (in press).

    Google Scholar 

  21. N. F. Mott, J. Non-Cryst. Solids 1: 1 (1968); Phil. Mag. 19: 835 (1969).

    CAS  Google Scholar 

  22. U. Sivan, O. Entin-Wohlman and Y. Imry, Phys. Rev. Lett. 60: 1566 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. P. J. Flory, “Statistical Mechanics of Chain Molecules”, Interscience, New York (1969).

    Google Scholar 

  24. R. Rammal, G. Toulouse and J. Vannimenus, J. Physique 45: 389 (1984).

    Article  Google Scholar 

  25. K. Kremer, Z. Phys. 345: 149 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aharony, A., Harris, A.B. (1989). Superlocalization, Anomalous Diffusion and Self Avoiding Walks on Fractals. In: Pietronero, L. (eds) Fractals’ Physical Origin and Properties. Ettore Majorana International Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3499-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3499-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3501-4

  • Online ISBN: 978-1-4899-3499-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics